A Review of Identification Measurement and Classification Methods for Environmental Pollutants Affecting the Erosion of Stone Heritage - Journal of Research on Archaeometry

قابل توجه نویسندگان محترم، مقالاتی که از تاریخ 1404/07/13 برای نشریه ارسال می شوند،  شامل پرداخت هزینه بررسی نخواهند شد.

------------------------------------------ ---------------------------------------
year 11, Issue 1 (2025)                   JRA 2025, 11(1): 0-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fadaei H, Ismailzadeh A. (2025). A Review of Identification, Measurement, and Classification Methods for Environmental Pollutants Affecting the Erosion of Stone Heritage. JRA. 11(1), : 12 doi:10.61882/jra.2025.11.112
URL: http://jra-tabriziau.ir/article-1-447-en.html
1- Research Centre for Conservation of Cultural Relics, Research Institute of Cultural Heritage and Tourism, Tehran, Iran , hfadaii@yahoo.com
2- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Abstract:   (1243 Views)
With the expansion of industries and the emergence of new technologies, the amount and diversity of environmental pollutants have increased significantly. Consequently, the erosion of historical artifacts near pollution sources has become more complex, and their deterioration—particularly in open spaces—is expected to intensify in the future. Given the importance of cultural heritage, a considerable portion of environmental monitoring efforts worldwide is devoted to identifying and assessing pollutants, evaluating their effects on historical artifacts, and developing effective strategies to mitigate their damage. A lack of sufficient knowledge regarding the impact of contaminants on stone artifacts can create serious challenges in designing and implementing conservation strategies. Therefore, understanding and classifying the pollutants that contribute to the erosion of historical artifacts, along with the methods used for their measurement, are of particular importance. The primary objective of this review is to establish a classification framework for different types of environmental pollutants that contribute to the deterioration of historical stone sites and to examine the methods employed for their measurement. Drawing on approximately 90 reputable research sources, this study categorizes environmental pollutants into 13 main groups and qualitatively analyzes the relevant data. The findings indicate that the nature of each pollutant determines the most suitable identification and measurement techniques. Accordingly, gas sensors and detectors are among the most common and efficient tools for monitoring certain air pollutants. Moreover, separation devices equipped with chromatography columns are widely used for identifying and quantifying pollutant ions
Article number: 12
Full-Text [PDF 856 kb]   (129 Downloads)    
Technical Note: Review | Subject: Archaeometry
Received: 2024/12/22 | Accepted: 2025/06/8 | Published: 2025/06/30 | ePublished: 2025/06/30

References
1. Aghav, R. M., Kumar, S., & Mukherjee, S. N. (2011). Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents. Journal of Hazardous Materials, 188(1), 67. [DOI:10.1016/j.jhazmat.2011.01.067]
2. Ali, U., Syed, J. H., Malik, R. N., Katsoyiannis, A., Li, J., Zhang, G., & Jones, K. C. (2014). Organochlorine pesticides (OCPs) in South Asian region: A review. Science of The Total Environment, 476-477, 705. [DOI:10.1016/j.scitotenv.2013.12.107]
3. Ambrazevičien, V., Galdikas, A., Grebinskij, S., Mironas, A., & Tvardauskas, H. (1993). Gas-sensing properties of chemically deposited SnOx films doped with Pt and Sb. Sensors and Actuators B: Chemical, 17(1), 27. [DOI:10.1016/0925-4005(93)85180-I]
4. Ammam, M., Keita, B., Nadjo, L., & Fransaer, J. (2010). Nitrite sensor based on multilayer film of Dawson-type tungstophosphate α-K7[H4PW18O62]·18H2O immobilized on glassy carbon. Talanta, 80(5), 2132. [DOI:10.1016/j.talanta.2009.11.020]
5. Amoroso, G. G., & Vasco, F. (1983). Stone decay and conservation: Atmospheric pollution, cleaning, consolidation, and protection. Elsevier.
6. Anan'ev, V., Miklin, M., & Kriger, L. (2014). Reactions of atomic oxygen with the chlorate ion and the perchlorate ion. Chemical Physics Letters, 607, 39. [DOI:10.1016/j.cplett.2014.05.038]
7. Armarego, W. L. F. (2017). Chapter 3 - Purification of organic chemicals. In Purification of laboratory chemicals (8th ed., pp. 95). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805457-4.50003-3 [DOI:10.1016/B978-0-12-805457-4.50004-5]
8. Ayas, N. (2018). Solvent materials. In I. Dincer (Ed.), Comprehensive energy systems (Vol. 2, p. 368). Elsevier. [DOI:10.1016/B978-0-12-809597-3.00226-1]
9. Baig, N., & Sajid, M. (2017). Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review. Trends in Environmental Analytical Chemistry, 16, 1. [DOI:10.1016/j.teac.2017.10.003]
10. Barbaro, S., Caracausi, R., Chaix, B., Chisesi, R. M., Cognata, G., & Lorusso, L. C. (2007). Setting up of a protocol of environmental research for the preservation and right exploitation of the cultural heritage. Conservation Science in Cultural Heritage: Historical Technical Journal, 7(1).
11. Busca, G. (2014-a). Metal catalysts for hydrogenations and dehydrogenations. In Heterogeneous catalytic materials (pp. 297). Elsevier. [DOI:10.1016/B978-0-444-59524-9.00009-2]
12. Busca, G. (2014-b). Metal oxides as acid-base catalytic materials. In Heterogeneous catalytic materials (pp. 103). Elsevier. [DOI:10.1016/B978-0-444-59524-9.00006-7]
13. Buurma, N. J. (2017). Aggregation and reactivity in aqueous solutions of cationic surfactants and aromatic anions across concentration scales. Current Opinion in Colloid & Interface Science, 32, 69. [DOI:10.1016/j.cocis.2017.10.005]
14. Chollet, A., Maveyraud, L., Lherbet, C., & Bernardes-Génisson, V. (2018). An overview on crystal structures of Inh A protein: Apo-form, in complex with its natural ligands and inhibitors. European Journal of Medicinal Chemistry, 146, 318. [DOI:10.1016/j.ejmech.2018.01.047]
15. Cichosz, S., Masek, A., & Zaborski, M. (2018). Polymer-based sensors: A review. Polymer Testing, 67, 342. [DOI:10.1016/j.polymertesting.2018.03.024]
16. Clarkson, T. W. (2001). Inorganic and organometal pesticides. In R. I. Krieger (Ed.), Handbook of pesticide toxicology (2nd ed., p. 1357). Academic Press. [DOI:10.1016/B978-012426260-7.50064-1]
17. Crompton, T. R. (1989). Analysis for anions and cations. In Analysis of seawater (pp. 31). Butterworth-Heinemann. [DOI:10.1016/B978-0-407-01610-1.50005-9]
18. Cseri, L., Razali, M., Pogany, P., & Szekely, G. (2018). Organic solvents in sustainable synthesis and engineering. In Green chemistry (pp. 513). Elsevier. [DOI:10.1016/B978-0-12-809270-5.00020-0]
19. Donahue, N. M. (2018). Air pollution and air quality. In Green chemistry (pp. 151). Elsevier. [DOI:10.1016/B978-0-12-809270-5.00007-8]
20. Dong, H., Wang, L., Zhou, L., Hou, T., & Li, Y. (2017). Theoretical investigations on novel SiC5 siligraphene as gas sensor for air pollutants. Carbon, 113, 114. [DOI:10.1016/j.carbon.2016.11.029]
21. Ecobichon, D. J. (2001). Carbamate insecticides. In R. I. Krieger (Ed.), Handbook of pesticide toxicology (2nd ed., p. 1087). Academic Press. https://doi.org/10.1016/B978-012426260-7/50055-0 [DOI:10.1016/B978-012426260-7.50055-0]
22. Fahim, M. A., Alsahhaf, T. A., & Elkilani, A. (2010). Acid gas processing and mercaptans removal. In Fundamentals of petroleum refining (pp. 377). Elsevier. [DOI:10.1016/B978-0-444-52785-1.00015-2]
23. Francioso, L. (2014). Chemiresistor gas sensors using semiconductor metal oxides. In K. C. Honeychurch (Ed.), Nanosensors for chemical and biological applications (pp. 101). Woodhead Publishing. [DOI:10.1533/9780857096722.1.101]
24. Gao, H., Wei, D., Lin, P., Liu, C., Sun, P., Shimanoe, K., Yamazoe, N., & Lu, G. (2017). The design of excellent xylene gas sensor using Sn-doped NiO hierarchical nanostructure. Sensors and Actuators B: Chemical, 253, 1152. [DOI:10.1016/j.snb.2017.06.177]
25. Gao, Q., Chen, W., Chen, Y., Werner, D., Cornelissen, G., Xing, B., Tao, S., & Wang, X. (2016). Surfactant removal with multiwalled carbon nanotubes. Water Research, 106, 531. [DOI:10.1016/j.watres.2016.10.027]
26. Grütz, P. W. E. (1967). Volatile fatty acid determination by automatic analysis. Water Research, 1(5), 319. [DOI:10.1016/0043-1354(67)90029-2]
27. Gupta, P. K. (2018). Pesticides (agrochemicals). In Illustrated toxicology (p. 165). Academic Press. [DOI:10.1016/B978-0-12-813213-5.00005-5]
28. Gupta, P., Lakes, A., & Dziubla, T. (2016). A free radical primer. In Oxidative stress and biomaterials (p. 1). Academic Press. [DOI:10.1016/B978-0-12-803269-5.00001-2]
29. Hackney, S. (1984). The distribution of gaseous air pollution within museums. Studies in Conservation, 29(3), 105. [DOI:10.1179/sic.1984.29.3.105]
30. Hegazi, A. H., & Andersson, J. T. (2016). Polycyclic aromatic sulfur heterocycles as source diagnostics of petroleum pollutants in the marine environment. In S. A. Stout & Z. Wang (Eds.), Standard handbook oil spill environmental forensics (2nd ed., p. 313). Academic Press. [DOI:10.1016/B978-0-12-803832-1.00006-4]
31. Ifegwu, O. C., & Anyakora, C. (2015). Polycyclic aromatic hydrocarbons: Part I. Exposure. In G. S. Makowski (Ed.), Advances in clinical chemistry (Vol. 72, p. 277). Elsevier. [DOI:10.1016/bs.acc.2015.08.001]
32. Innes, R. (2013). Economics of agricultural residuals and overfertilization: Chemical fertilizer use, livestock waste, manure management, and environmental impacts. In J. F. Shogren (Ed.), Encyclopedia of energy, natural resource, and environmental economics (p. 50). Elsevier. [DOI:10.1016/B978-0-12-375067-9.00118-2]
33. Jacobsen, E., & Lindseth, H. (1976). Effects of surfactants in differential pulse polarography. Analytica Chimica Acta, 86, 123. [DOI:10.1016/S0003-2670(01)83025-7]
34. Jiang, Y., Liang, P., Huang, X., & Ren, Z. J. (2018). A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere, 203, 21. [DOI:10.1016/j.chemosphere.2018.03.169]
35. Johnson, D. (2005). Pollutants | Persistent organic (POPs). In D. Hillel (Ed.), Encyclopedia of soils in the environment (p. 264). Elsevier. [DOI:10.1016/B0-12-348530-4/00560-9]
36. Kohlmeier, M. (2015). Fatty acids. In Nutrient metabolism (2nd ed., p. 111). Academic Press. [DOI:10.1016/B978-0-12-387784-0.00005-5]
37. Krouská, J., Pekař, M., Klučáková, M., Šarac, B., & Bešter-Rogač, M. (2017). Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry. Carbohydrate Polymers, 157, 1837. [DOI:10.1016/j.carbpol.2016.11.069]
38. Kumar, P., Kim, K.-H., & Deep, A. (2015). Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosensors and Bioelectronics, 70, 469. [DOI:10.1016/j.bios.2015.03.066]
39. Lamichhane, S., Bal Krishna, K. C., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere, 148, 336. [DOI:10.1016/j.chemosphere.2016.01.036]
40. Lee, S. W., Lee, W., Lee, D., Choi, Y., Kim, W., Park, J., Lee, J. H., Lee, G., & Yoon, D. S. (2018). A simple and disposable carbon adhesive tape-based NO2 gas sensor. Sensors and Actuators B: Chemical, 266, 485. [DOI:10.1016/j.snb.2018.03.161]
41. Li, J.-D., Cai, Y.-Q., Shi, Y.-L., Mou, S.-F., & Jiang, G.-B. (2007). Determination of sulfonamide compounds in sewage and river by mixed hemimicelles solid-phase extraction prior to liquid chromatography-spectrophotometry. Journal of Chromatography A, 1139(2), 178-184. [DOI:10.1016/j.chroma.2006.11.023]
42. Likens, G. E. (2013). Acid rain. In Fundamentals of ecosystem science (p. 259). Academic Press. [DOI:10.1016/B978-0-08-091680-4.00015-9]
43. Linert, W., Holzweber, M., & Schmid, R. (2014). Solvent effects on chemical reactivity. In G. Wypych (Ed.), Handbook of solvents (2nd ed., p. 753). ChemTec Publishing. [DOI:10.1016/B978-1-895198-64-5.50020-9]
44. List, G. R., Kenar, J. A., & Moser, B. R. (2017). History of fatty acids chemistry. In M. U. Ahmad (Ed.), Fatty acids (p. 1). AOCS Press.
45. Lorenzo, M., Campo, J., & Picó, Y. (2018). Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. TrAC Trends in Analytical Chemistry, 103, 137. [DOI:10.1016/j.trac.2018.04.003]
46. Mahajan, R. K., Kaur, R., Miyake, H., & Tsukube, H. (2007). Zn(II) complex-based potentiometric sensors for selective determination of nitrate anion. Analytica Chimica Acta, 584(1), 89. [DOI:10.1016/j.aca.2006.11.011]
47. Mannervik, B. (1982). Mercaptans. In W. B. Jakoby, J. R. Bend, & J. Caldwell (Eds.), Metabolic basis of detoxication (p. 185). Academic Press. [DOI:10.1016/B978-0-12-380060-2.50016-7]
48. Marinovich, M., Viviani, B., & Galli, C. L. (1994). The predominant role of surfactants in the modulation of toxicity of detergent products: An in vitro analysis of shampoos. Toxicology in Vitro, 8(1), 91. [DOI:10.1016/0887-2333(94)90212-7]
49. Mathieu, Y., Tzanis, L., Soulard, M., Patarin, J., Vierling, M., & Molière, M. (2013). Adsorption of SOx by oxide materials: A review. Fuel Processing Technology, 114, 81. [DOI:10.1016/j.fuproc.2013.03.019]
50. Miniero, R., Iamiceli, A. L., & De Felip, E. (2015). Persistent organic pollutants. In Reference module in earth systems and environmental sciences. Elsevier. [DOI:10.1016/B978-0-12-409548-9.09496-3]
51. Morrison, R. D., Vavricka, E. A., & Duncan, P. B. (1964). Perchlorate. In Environmental forensics (p. 167). Academic Press. [DOI:10.1016/B978-012507751-4/50031-8]
52. Motherwell, W. B., & Crich, D. (1992). Substitution reactions. In Free radical chain reactions in organic synthesis (p. 29). Academic Press. [DOI:10.1016/B978-0-08-092495-3.50010-6]
53. Nesterenko, P. N., & Paull, B. (2017). Ion chromatography. In S. Fanali, P. R. Haddad, C. F. Poole, & M.-L. Riekkola (Eds.), Liquid chromatography (2nd ed., p. 205). Elsevier. [DOI:10.1016/B978-0-12-805393-5.00009-9]
54. Okumura, S., Umehara, S., Fujii, Y., Nomura, M., Kaneshiki, T., Ozawa, M., & Kishimoto, T. (2015). Separation of calcium-48 isotope by crown ether chromatography using ethanol/hydrochloric acid mixed solvent. Journal of Chromatography A, 1415, 67. [DOI:10.1016/j.chroma.2015.08.057]
55. Omidvar, A. (2018). Catalytic role of transition metals supported on niobium oxide in O2 activation. Applied Surface Science, 434, 1239. [DOI:10.1016/j.apsusc.2017.11.239]
56. Pang, X., Shaw, M. D., Gillot, S., & Lewis, A. C. (2018). The impacts of water vapour and co-pollutants on the performance of electrochemical gas sensors used for air quality monitoring. Sensors and Actuators B: Chemical, 266, 674. [DOI:10.1016/j.snb.2018.03.144]
57. Patel, N. G., Makhija, K. K., & Panchal, C. J. (1994). Fabrication of carbon dioxide gas sensor and its alarm system using indium tin oxide (ITO) thin films. Sensors and Actuators B: Chemical, 21(3), 193. [DOI:10.1016/0925-4005(94)01247-4]
58. Polák, J., & Janáček, L. (1989). Application of polarography in petrochemical analysis. TrAC Trends in Analytical Chemistry, 8(4), 145. [DOI:10.1016/0165-9936(89)85025-3]
59. Porras, S. P., Hartonen, M., Ylinen, K., Tornaeus, J., Tuomi, T., & Santonen, T. (2018). Environmental and occupational exposure to resorcinol in Finland. Toxicology Letters. [DOI:10.1016/j.toxlet.2018.03.027]
60. Rao, N. N., & Dube, S. (1996). Photocatalytic degradation of mixed surfactants and some commercial soap/detergent products using suspended TiO2 catalysts. Journal of Molecular Catalysis A: Chemical, 104(3), L197. [DOI:10.1016/1381-1169(95)00259-6]
61. Regtien, P., & Dertien, E. (2018). Inductive and magnetic sensors. In Sensors for mechatronics (2nd ed., p. 145). Elsevier. [DOI:10.1016/B978-0-12-813810-6.00006-9]
62. Ricciardi, M., Faggiano, A., Pironti, C., Motta, O., Carotenuto, M., Comite, V., Fermo, P., & Proto, A. (2022). Analysis of PAHs (polycyclic aromatic hydrocarbons) and other main components in black crusts collected from the Monumental Cemetery of Milan (Italy). Journal of Physics: Conference Series, 2204, 012027. [DOI:10.1088/1742-6596/2204/1/012027]
63. Rizzo, G., D'Agostino, F., Megna, B., Parlapiano, M., & Ercoli, L. (2007). Assessment of the conservation state of stone materials in relation to the level of environmental pollution in the conservation place. Conservation Science in Cultural Heritage, 7(1).
64. Rovella, N., Aly, N., Comite, V., Randazzo, L., Fermo, P., Barca, D., Alvarez de Buergo, M., & La Russa, M. F. (2020). The environmental impact of air pollution on the built heritage of historic Cairo (Egypt). Science of the Total Environment. [DOI:10.1016/j.scitotenv.2020.142905]
65. Sandler, S. R., & Karo, W. (1986). Semicarbazides. In Organic functional group preparations (2nd ed., p. 213). Academic Press. [DOI:10.1016/B978-0-08-092557-8.50012-4]
66. Schroot, B., & Heggland, R. (2005). Natural gas migration to the near-surface environment as an analogue to potential leakage of CO2-detection and mechanisms. In Greenhouse gas control technologies 7 (p. 2289). Elsevier Science Ltd. [DOI:10.1016/B978-008044704-9/50319-0]
67. Singha, A., Arfin, T., Mathew, N., & Tirpude, A. (2024). The significance of air pollution in the process of stone deterioration. Innovation of Chemistry & Materials for Sustainability, 1(1), 066-075. https://insuf.org/journal/icms [DOI:10.63654/icms.2024.01066]
68. Smid, J. (1977). Solute binding to polymers containing macro heterocyclic rings. In S. Penczek (Ed.), Polymerization of heterocycles (ring opening) (p. 343). Pergamon. [DOI:10.1016/B978-0-08-021367-5.50015-8]
69. Song, L., Xu, Z., Kang, J., & Cheng, J. (1997). Analysis of environmental pollutants by capillary electrophoresis with emphasis on micellar electrokinetic chromatography. Journal of Chromatography A, 780(1), 297. [DOI:10.1016/S0021-9673(97)00365-8]
70. Srinivasan, K. (2017). Ion chromatography instrumentation for water analysis. In S. Ahuja (Ed.), Chemistry and water (p. 329). Elsevier. [DOI:10.1016/B978-0-12-809330-6.00009-X]
71. Starek-Świechowicz, B., Budziszewska, B., & Starek, A. (2017). Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacological Reports, 69(6), 1232. [DOI:10.1016/j.pharep.2017.06.013]
72. Sun, J.-L., Zeng, H., & Ni, H.-G. (2013). Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere, 90(6), 1751. [DOI:10.1016/j.chemosphere.2012.10.094]
73. Telting-Diaz, M., & Qin, Y. (2006). Potentiometry. In S. Ahuja & N. Jespersen (Eds.), Comprehensive analytical chemistry (Vol. 47, p. 625). Elsevier. [DOI:10.1016/S0166-526X(06)47027-6]
74. Tondeur, Y., & Hart, J. (2009). Ultratrace extraction of persistent organic pollutants. TrAC Trends in Analytical Chemistry, 28(10), 1137. [DOI:10.1016/j.trac.2009.07.009]
75. Toohey, D. (2015). Stratospheric chemistry topics: Halogens. In G. R. North, J. Pyle, & F. Zhang (Eds.), Encyclopedia of atmospheric sciences (2nd ed., p. 215). Academic Press. [DOI:10.1016/B978-0-12-382225-3.00385-6]
76. Twigg, M. V. (2013). Advanced integrated exhaust aftertreatment systems and the mechanisms of NOx emissions control. In Internal combustion engines: Performance, fuel economy and emissions (p. 219). Woodhead Publishing. [DOI:10.1533/9781782421849.6.219]
77. Valentini, F., Allegrini, I., Colasanti, I., Zaratti, C., Macchia, A., Barandoni, C., & Neri, A. (2025). Preliminary assessment of air pollution in the Archaeological Museum of Naples (Italy): Long-term monitoring of nitrogen dioxide and nitrous acid. Preprints. [DOI:10.20944/preprints202502.1737.v1]
78. Vega, M., Nerenberg, R., & Vargas, I. T. (2018). Perchlorate contamination in Chile: Legacy, challenges, and potential solutions. Environmental Research, 164, 316. [DOI:10.1016/j.envres.2018.02.034]
79. Villarreal, C. C., Pham, T., Ramnani, P., & Mulchandani, A. (2017). Carbon allotropes as sensors for environmental monitoring. Current Opinion in Electrochemistry, 3(1), 106. [DOI:10.1016/j.coelec.2017.07.004]
80. Wallace, L. A. (1993). Volatile organic chemicals. In M. Corn (Ed.), Handbook of hazardous materials (p. 713). Academic Press. [DOI:10.1016/B978-0-12-189410-8.50065-1]
81. Wan, H., Yin, H., Lin, L., Zeng, X., & Mason, A. J. (2018). Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sensors and Actuators B: Chemical, 255, 638. [DOI:10.1016/j.snb.2017.08.109]
82. Wang, Z. (2018). Energy and air pollution. In I. Dincer (Ed.), Comprehensive energy systems (p. 909). Elsevier. [DOI:10.1016/B978-0-12-809597-3.00127-9]
83. Watt, J., Tidblad, J., Kucera, V., & Hamilton, R. (2009). The effects of air pollution on cultural heritage (Vol. 6). Springer.
84. Wiegleb, G., & Heitbaum, J. (1994). Semiconductor gas sensor for detecting NO and CO traces in ambient air of road traffic. Sensors and Actuators B: Chemical, 17(2), 93. [DOI:10.1016/0925-4005(94)87035-7]
85. Xin, K., Chen, J., & Soyol-Erdene, T. (2023). Formation mechanism and source apportionment of nitrate in atmospheric aerosols. APN Science Bulletin, 13, 102. [DOI:10.30852/sb.2023.2225]
86. Yan, Y., Shimizu, Y., Miura, N., & Yamazoe, N. (1993). Characteristics and sensing mechanism of SOx sensor using stabilized zirconia and metal sulphate. Sensors and Actuators B: Chemical, 12(2), 77. [DOI:10.1016/0925-4005(93)80001-R]
87. Yıldız, İ. (2018). Fossil fuels. In I. Dincer (Ed.), Comprehensive energy systems (p. 521). Elsevier. [DOI:10.1016/B978-0-12-809597-3.00111-5]
88. Zhang, K., Cao, M., Lou, C., Wu, S., Zhang, P., Zhi, M., & Zhu, Y. (2017). Graphene-coated polymeric anion exchangers for ion chromatography. Analytica Chimica Acta, 970, 73. [DOI:10.1016/j.aca.2017.03.015]
89. Zhang, Y., Chen, D., Wang, S., & Tian, L. (2018). A promising trend for field information collection: An air-ground multi-sensor monitoring system. Information Processing in Agriculture, 5(2), 224. [DOI:10.1016/j.inpa.2018.02.002]
90. Zhou, L., Li, C., Zhao, L., Zeng, G., Gao, L., Wang, Y., & Yu, M. (2016). The poisoning effect of PbO on Mn-Ce/TiO₂ catalyst for selective catalytic reduction of NO with NH₃ at low temperature. Applied Surface Science, 389, 532. [DOI:10.1016/j.apsusc.2016.07.136]
91. Zhu, R., Zhu, J., Ge, F., & Yuan, P. (2009). Regeneration of spent organoclays after the sorption of organic pollutants: A review. Journal of Environmental Management, 90(11), 3212. [DOI:10.1016/j.jenvman.2009.06.015]
92. Zimdahl, R. L. (2018). Herbicides and the environment. In Fundamentals of weed science (5th ed., p. 557). Academic Press. [DOI:10.1016/B978-0-12-811143-7.00020-2]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb