Detecting the location of unmarked graves for archaeological purposes ‎using Ground-penetrating radar (GPR) ‎ - Journal of Research on Archaeometry
------------------------------------------ ---------------------------------------
year 5, Issue 2 (2019)                   JRA 2019, 5(2): 15-33 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi R. Detecting the location of unmarked graves for archaeological purposes ‎using Ground-penetrating radar (GPR) ‎. JRA. 2019; 5 (2) :15-33
URL: http://jra-tabriziau.ir/article-1-191-en.html
Arak University of Technology , rezahmadi@gmail.com
Abstract:   (2673 Views)
Ground penetrating radar (GPR) is a non-destructive evaluation geophysical method that is able to detect and imaging the all kinds of human handmade structures, subsurface heterogeneities caused by buried objects, identifying empty spaces and cavities in environments and shallow buried targets. GPR has many applications in diverse fields of engineering and science. In the present research, the ability of employing GPR method to detect and determine the location of unmarked graves and buried corps, for archaeological purposes and similar cases has been investigated. In Iran country, the GPR method has not been widely used in archeology, especially for discovery of unmarked graves and detection of buried corps. In many areas of Iran, there are ancient cemeteries and historical tombs that require applying non-destructive and efficient geophysical methods such as GPR method in order for complete subsurface identification. To detect the exact location of unmarked graves and identification of underground human bodies by archaeogeophysical methods, having complete knowledge of the size of the human body’s skeleton (bones), dimensions and material types of various coffins, mummy types and the effect of mummy on the permanence time of the body, decomposition of a corpse, procedure of body burial in different religions and burial depth of corpse is required. To achieve the goal, simulation and forward modeling of GPR data using 2D finite-different method improved in the frequency domain, has been carried out for synthetic models corresponding to empty graves, bones of human body’s members as well as coffins with kinds of materials (wooden and metallic). The most of traditional coffins are wooden with the variety of designs and styles whereas relatively newer ones are made from metal. For this reason, these two types are used for modeling. In forward modeling of synthetic models, the central frequency of antenna was selected about 250MHz to 500MHz. The host medium of targets was chosen from silty clay soil, dry sand and gravel or sandy soil. In order to avoid numerical dispersion, the spatial discretization intervals (grid dimensions) along the X and Z axes were determined equal to 0.01m. Also to prevent numerical instability, temporal sampling rate was set to 0.005ns. Since in reality, coffins are usually at depths of 1ft to 2ft, in the simulations burial depth of upper surface of the coffin or corps was set to 0.8m to 1.2m and the overall depth of the grave was considered maximum 2m. According to the results of the forward modeling, regarding an empty grave, the response of the target top is as hyperbolic with a flat peak while for the bottom of the model is a defective hyperbolic with a flat peak. Therefore, in interpreting the results of actual GPR radargrams this type of response indicates the presence of a cubic structure like a buried grave. In general, the GPR response of the human’s body represents itself as a hyperbolic reflection. For a buried target with a geometrical shape like a wooden coffin filled with air, the response of top and bottom of the coffin is clearly distinguished and the reflection intensity off both responses is relatively strong. Regarding the metallic coffin the response of top is stronger than the wooden one but there is no reflection from its bottom that is due to the strong reflection off the metal and the high attenuation of the electromagnetic waves by the metals. Also in order to investigate the subsurface of the pretty old cemetery, real GPR data was acquired using a GPR system equipped with 800 MHz central frequency shielded antenna. The finalized radargram along one of the surveyed profiles in the studied area through applying various sequence processing containing static correction, dewow filter, band-pass filter, background removal and stacking on the GPR raw data using Reflexw software has also been provided. The results of this research, on the basis of produced GPR responses for the variety of synthetic models and the radargram of real GPR data, show the capability of application of GPR method for archaeological investigations to detect and locate hidden graves, coffins and human corps by expending low cost in a short time without any manipulation and destruction of the environment.
 
Full-Text [PDF 1956 kb]   (641 Downloads)    
Technical Note: Original Research | Subject: Archaeometry
Received: 2019/08/20 | Accepted: 2019/11/4 | Published: 2019/12/30 | ePublished: 2019/12/30

References
1. Annan AP. Ground penetrating radar workshop notes. Sensors & Software Inc., Ontario, Canada. 2001.
2. Knödel K, Lange G, Voigt HJ. Environmental geology: handbook of field methods and case studies. Springer Science & Business Media; 2007 Dec 31.
3. Ali Tajer S, Afshari Azad S. Investigating the role of geomatics engineering in the applications of cultural heritage, archeology and architecture. Pazhohesh-ha-ye Bastanshenasi Iran. 2014; 3(5):169-195. [in Persian] [علیتاجر سعید، افشاری‏آزاد سمیه. بررسی جایگاه مهندسی ژئوماتیک در کاربردهای میراث فرهنگی -باستان‏شناسی و معماری. دو فصلنامه علمی- پژوهشی پژوهش های باستا‏ن‏شناسی ایران. 1392، 5(3): 169-195].
4. Sleep NH, Fujita K. Principles of geophysics. Malden, Massachusetts: Blackwell Science; 1997.
5. Vickers R, Dolphin L, Johnson D. Archeological investigations at chaco canyon using a subsurface radar.
6. Fischer PM, Follin SG, Ulriksen P. Subsurface Interface Radar Survey at Hala Sultan Tekke, Cyprus. Swedish Annual Studies in Mediterranean Archaeology. 1980;63:48-64.
7. Sheets PD, Loker WM, Spetzler HA, Ware RW. Geophysical exploration for ancient Maya housing at Ceren, El Salvador. National Geographic Research Reports. 1985;20:645-56.
8. Conyers LB, Goodman D. Ground-penetrating radar. An Introduction for Archaeologist: AltaMira Press; 1997 Mar.
9. Martino L, Bonomo N, Lascano E, Osella A, Ratto N. Electrical and GPR prospecting at Palo Blanco archaeological site, northwestern Argentina. Geophysics. 2006 Nov;71(6):B193-9. ]doi.org/10.1190/1.2345193[ [DOI:10.1190/1.2345193]
10. Arciniega-Ceballos A, Hernandez-Quintero E, Cabral-Cano E, Morett-Alatorre L, Diaz-Molina O, Soler-Arechalde A, Chavez-Segura R. Shallow geophysical survey at the archaeological site of San Miguel Tocuila, Basin of Mexico. Journal of Archaeological Science. 2009 Jun 1;36(6):1199-205. ]doi.org/10.1016/j.jas.2009.01.025[ [DOI:10.1016/j.jas.2009.01.025]
11. Goodman D, Piro S, Nishimura Y, Schneider K, Hongo H, Higashi N, Steinberg J, Damiata B. GPR archaeometry. Ground Penetrating Radar Theory and Applications. 2008 Dec 8:479-508. ]doi.org/10.1016/B978-0-444-53348-7.00015-6[ [DOI:10.1016/B978-0-444-53348-7.00015-6]
12. Sambuelli L, Calzoni C, Stocco S, Rege R. Geophysical measurements on the occasion of the moving of an ancient Egyptian sculpture. InProc. GNGTS Conf.(Trieste, Italy, 16-19 November) 2010 Nov (pp. 595-9).
13. Solla M, Lorenzo H, Novo A, Riveiro B. Evaluation of ancient structures by GPR (ground penetrating radar): the arch bridges of Galicia (Spain). Scientific Research and Essays. 2011 Apr 18;6(8):1877-84.
14. Shyeh SK, Nordiana MM, Anuar S, Saad R, Saidin M. Archaeological Evidences Detection by using GPR Method: SB2K Site. EJGE, Bund. Y. 2014;19:8569-78.
15. Aydin A, Baykan O, Akyol E. Detecting ancient water distribution system using GPR in Patara, Antalya, Turkey. Multidisciplinary Engineering Science and Technology (JMEST). 2014;1(5):32-8.
16. Ahmadpour A, Kamkar Rouhani A, Ahmadi R. Archaeological exploration of Tappeh Hissar, Damghan using forward and inverse modeling of Ground-Penetrating Radar data. Journal of Research on Archaeometry. 2016 Sep 10;2(1):1-6.] doi.org/10.29252/jra.2.1.1[ [DOI:10.29252/jra.2.1.1]
17. Mellett JS. Location of human remains with ground-penetrating radar. InFourth International Conference on Ground Penetrating Radar 1992 Jun 8 (pp. cp-303). European Association of Geoscientists & Engineers.] doi.org/10.3997/2214-4609-pdb.303.45[
18. Patch, Sh., (2009), Identification of unmarked graves at B.F. Randolph cemetery using Ground Penetrating Radar (GPR), Report submitted to Historic Columbia Foundation.
19. Barone PM, Swanger KJ, Stanley-Price N, Thursfield A. Finding graves in a cemetery: preliminary forensic GPR investigations in the non-Catholic cemetery in Rome (Italy). Measurement. 2016 Feb 1;80:53-7. ]doi.org/10.1016/j.measurement.2015.11.023[ [DOI:10.1016/j.measurement.2015.11.023]
20. Fernández-Álvarez JP, Rubio-Melendi D, Martínez-Velasco A, Pringle JK, Aguilera HD. Discovery of a mass grave from the Spanish Civil War using Ground Penetrating Radar and forensic archaeology. Forensic Science International. 2016 Oct 1;267:e10-7. ]doi.org/10.1016/j.forsciint.2016.05.040[ [DOI:10.1016/j.forsciint.2016.05.040]
21. Widodo W, Aditama IF, Syaifullah K, Mahya MJ, Hidayat M. Detecting buried human bodies using ground-penetrating radar. Earth Science Research. 2016;5(2):59. ]doi.org/10.5539/esr.v5n2p59[ [DOI:10.5539/esr.v5n2p59]
22. Amari IE, Alsulaimani GS. Detecting and Imaging Historical Graves by Using Visual Inspection and Ground Penetrating Radar Investigation.
23. Oveisi-Moakhar M, Ghasemi V, Shah-Nazari, H. Magnetic and radar studies on the arches of Khosrow historical structure in Ghasr-e-Shirin city. 12th Geophysics Conference of Iran, 2005. [in Persian] [اویسی موخر محسن، قاسمی وحید، شاه نظری حسین. مطالعه مغناطیسی و رادار بر روی طاق‏های عمارت تاریخی خسرو در شهر قصر شیرین. دوازدهمین کنفرانس ژئوفیزیک ایران، 1384].
24. Reshmeh-Karim A, Kamkar-Rouhani A, Arab-Amiri A. Application of Ground-Penetrating Radar (GPR) method in archaeology investigations, case study: Damghan Tappeh-Hissar. 15th Symposium of Geological Society of Iran, 2001. [in Persian] [رشمه کریم ارژنگ، کامکار روحانی ابوالقاسم، عرب امیری علیرضا. استفاده از روش رادار نفوذی به زمین (GPR) در کاوش‏های باستان‏شناسی، مطالعه موردی سایت تپه حصار دامغان. پانزدهمین همایش انجمن زمین‌شناسی ایران، 1390].
25. Mohammad khani K. Application of exploration geophysics methods in archaeology (archaeogeophysics), case study: study of magnetometry in Takht-e-Jamshid and Pasargad, MSc. Thesis on archaeology, Tarbiat Modares University 2004. [in Persian] [محمدخانی، کورش. کاربرد روش‏های ژئوفیزیک اکتشافی در باستان‌شناسی (آرکئوژئوفیزیک)، مطالعه موردی: بررسی مغناطیس‏سنجی در تخت جمشید و پاسارگاد. پایان‏نامه کارشناسی‏ارشد، باستان‏شناسی، دانشگاه تربیت مدرس 1383.]
26. http://jamejamonline.ir/online/2853378112472890822/
27. http://elmi.akaup.com/elmi/chemistry1/news20177822331357613.html
28. Golalipour M.J, Jahanshahi M, Haydari K, Rezaee N. Estimation of cranial capacity of Turkman's 17-20 years old in Gorgan-North of Iran 2005, 7(1): 31-33. [in Persian] [گلعلی‏پور محمدجعفر، جهانشاهی مهرداد، حیدری کامران، رضائی نوراالله. تعیین حجم جمجمه در بالغین 20-17 ساله گروه قومی ترکمن در شهرستان گرگان. مجله علمی دانشگاه علوم پزشکی گرگان 1384، 7(1): 31-33].
29. https://en.wikipedia.org/wiki/List_of_bones_of_the_human_skeleton#Spine_(vertebral_column)
30. Annan AP. GPR-History, trends, and future developments. Subsurface sensing technologies and applications. 2002 Oct 1;3(4):253-70. ]doi.org/10.1023/A:1020657129590[ [DOI:10.1023/A:1020657129590]
31. https://www.impulseradar.se/technology
32. tagrsi.com/examples/. Sturm Inc., TAG research, Technical. Archaeological. Geophysical. Solutions.
33. www.google.com/search?q=gpr+images
34. Jol HM, editor. Ground penetrating radar theory and applications. elsevier; 2008 Dec 8.
35. Annan AP. GPR methods for hydrogeological studies. In Hydrogeophysics 2005 (pp. 185-213). Springer, Dordrecht. ]doi.org/10.1007/1-4020-3102-5_7[ [DOI:10.1007/1-4020-3102-5_7]
36. Sadiku MN. Numerical techniques in electromagnetics. CRC press; 2000 Jul 12. ]doi.org/10.1201/9781420058277[ [DOI:10.1201/9781420058277]
37. Irving J, Knight R. Numerical modeling of ground-penetrating radar in 2-D using MATLAB. Computers & Geosciences. 2006 Nov 1;32(9):1247-58. ]doi.org/10.1016/j.cageo.2005.11.006[ [DOI:10.1016/j.cageo.2005.11.006]
38. Ahmadi R, Fathianpour N, Norouzi G.H. Improving Ground-Penetrating Radar (GPR) forward modeling approach using the numerical finite difference method, Iranian Journal of Geophysics 2014, 8(3): 114-130. [in Persian] [احمدي رضا، فتحيان‏پور نادر، نوروزي غلامحسین. بهبود مدل‌سازي پيشرو داده‌‌‌هاي رادار نفوذي به زمين (GPR) به روش عددي تفاضل متناهي. مجله ژئوفيزيك ايران 1393، 8(3): 114-130].
39. Davis JL, ANNAN AP. Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy 1. Geophysical prospecting. 1989 Jul;37(5):531-51.] doi.org/10.1111/j.1365-2478.1989.tb02221.x[ [DOI:10.1111/j.1365-2478.1989.tb02221.x]
40. Zeng X, McMechan GA. GPR characterization of buried tanks and pipes. Geophysics. 1997 May;62(3):797-806. ]doi.org/10.1190/1.1444189[ [DOI:10.1190/1.1444189]
41. Ahmadi R, Fathianpour N, Norouzi GH. Detecting physical and geometrical parameters of some common geotechnical targets through their effects on GPR responses. Arabian Journal of Geosciences. 2015 Jul 1;8(7):4843-54. ]doi.org/10.1007/s12517-014-1517-5[ [DOI:10.1007/s12517-014-1517-5]
42. Ahmadi R. Developing an intelligent algorithm to detect geometrical and physical parameters of geotechnical targets using GPR responses. Ph.D thesis, Mining engineering department, College of engineering, University of Tehran. 2015. ]in Persian[. [احمدي رضا. تهيه الگوريتمي هوشمند جهت شناسايي مشخصات فيزيکي و هندسي اهداف ژئوتکنيکي با استفاده از پاسخ امواج GPR، رساله دکتراي تخصصي، پرديس دانشکده‏هاي فني، دانشکده مهندسي معدن، دانشگاه تهران، 1393].

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb