Archaeometry a Discipline for Linking Archaeology to Natural Sciences (Aims and Scopes) - Journal of Research on Archaeometry
------------------------------------------ ---------------------------------------
year 1, Issue 2 (2016)                   JRA 2016, 1(2): 75-82 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emami S M A. Archaeometry, a Discipline for Linking Archaeology to Natural Sciences (Aims and Scopes). JRA 2016; 1 (2) :75-82
Art University of Isfahan ,
Abstract:   (6381 Views)

In the last decade, increasing and develop of the scientific discipline such as science, engineering and medicine was considerable. With respect to this point of view, nowadays, comparative and interdisciplinary disciplines are also collaborated to each other. Archaeological investigations followed by related scientific methods would try to get answer to the problems which were mentioned by archaeologists due to the know-how in antiquity. Archaeometry means, the use of new instrumental, statistical methods for interpreting the technology based on collected archaeological data. In another word, archaeometry is a methodology for data management which has been collected via different expertise of each scientific discipline. Archaeometrical studies focus mostly on generate and development of common language for linking human science with another discipline such as science, engineering and medicine.

Full-Text [PDF 903 kb]   (2887 Downloads)    
Technical Note: Review | Subject: Archaeometry
Received: 2015/10/7 | Accepted: 2016/01/15 | Published: 2016/03/19 | ePublished: 2016/03/19

1. Binford, L. R. (1962). Archaeology as anthropology. American antiquity, 217-225. [DOI:10.2307/278380]
2. Binford, L. R. (1965). Archaeological systematics and the study of culture process. American antiquity, 203-210. [DOI:10.2307/2693985]
3. Binford, L. R., & Sabloff, J. A. (1982). Paradigms, systematics, and archaeology. Journal of Anthropological Research, 137-153. [DOI:10.1086/jar.38.2.3629594]
4. Bishop, R. L., Rands, R. L., & Holley, G. R. (1982). Ceramic compositional analysis in archaeological perspective. Advances in archaeological method and theory, 275-330. [DOI:10.1016/B978-0-12-003105-4.50012-1]
5. Daar, E., Al Mugren, K. S., Chika, S., Barnes, S., & Bradley, D. A. (2015). XRF measurements of Zn, Sr and Pb in archaeological bone. X-Ray Spectrometry, 44(3), 129-134. [DOI:10.1002/xrs.2589]
6. Duminuco, P., Messiga, B., & Riccardi, M. (1998). Firing process of natural clays. Some microtextures and related phase compositions. Thermochimica Acta, 321(1), 185-190. [DOI:10.1016/S0040-6031(98)00458-4]
7. Emami, M. (2012). QXRD, XRF and optical microscopy applied to characterization and provenance of ancient ceramics from Haft Teppeh (1500–1150 BC), southwest Iran. In IOP Conference Series: Materials Science and Engineering (Vol. 37, No. 1, p. 012012). IOP Publishing. [DOI:10.1088/1757-899X/37/1/012012]
8. Emami, M. (2014). \"Toroud\", the late motion for As-Sb bearing Cu production from 2nd millennium BC in Iran: An archaeometallurgical approach. Mediterranean Archaeology and Archaeometry, 14(2), 169-188.
9. Emami, M., & Trettin, R. (2012). Mineralogical and chemical investigations on the ceramic technology in Čoġā Zanbil,(Iran, 1250 BC). Periodico di Mineralogia Vol. 81, 3 dicembre 2012, 359.
10. Emami, M., & Trettin, R. (2013). High Tech in 5100 BC: multianalytical approach for characterisation of decorated pottery from Tappeh-Zaghe. Surface Engineering, 29(2), 134-139. [DOI:10.1179/1743294412Y.0000000063]
11. Emami, S. M. (2010). Preliminary studies on mining methods used in Sivand quarries during the Achaemenian period in Fars province, Irán. Geología Colombiana, 35, 175.
12. Emami, S. M. A., Volkmar, J., & Trettin, R. (2008). Quantitative characterisation of damage mechanisms in ancient ceramics by quantitative X-ray powder diffraction, polarisation microscopy, confocal laser scanning microscopy and non-contact mode atomic force microscopy. Surface Engineering, 24(2), 129-137. [DOI:10.1179/174329408X298157]
13. Fernández, J. E., Scot, V., & Sabbatucci, L. (2015). A modeling tool for detector resolution and incomplete charge collection. X-Ray Spectrometry, 44(3), 177-182. [DOI:10.1002/xrs.2597]
14. Freestone, I. (1982). Applications and Potential of Electron probe Micro-Analysis in Technological and rovenance investigations of ancient caramics. Archaeometry, 24(2), 99-116 . [DOI:10.1111/j.1475-4754.1982.tb00993.x]
15. Garrigós, B. I., Ontiveros, C., & Kilikoglou, V. (2003). Chemical Variability in Clays and Pottery from a Traditional Cooking Pot Production Village: Testing Assumptions in Pereruela*. Archaeometry, 45(1), 1-17. [DOI:10.1111/1475-4754.00093]
16. Giumlia-Mair, A. (2001, September). Iron Age tin in the Oriental Alps. In Le problème de l\'étain à l\'origine de la métallurgie/The Problem of Early Tin (Giumlia-Mair A. and Lo Schiavo F. ed.), Acts of the XIVth UISPP Congress, University of Liège, Belgium (pp. 2-8).
17. Gondet, S., Dhemaied, A., Mohammadkhani, K., & Rejiba, F. (2009). Geophysical investigations in the vicinity of the Persepolis Royal Terrace (Fars province, Iran). ArcheoSciences. Revue d\'archéométrie(33 (suppl.)), 69-72. [DOI:10.4000/archeosciences.1307]
18. Hauptmann, A. (1985). 5000 Jahre Kupfer in Oman: Die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit (Vol. 4). Dt. Bergbaumuseum.
19. Hell, S. W., Dyba, M., & Jakobs, S. (2004). Concepts for nanoscale resolution in fluorescence microscopy. Current opinion in neurobiology, 14(5), 599-609. [DOI:10.1016/j.conb.2004.08.015]
20. Henderson, J. (2013). The science and archaeology of materials: an investigation of inorganic materials. Routledge.
21. Keesmann, I., Bachmann, H., & Hauptmann, A. (1984, January). Classification of Iron-rich Slags According to the Phase-composition. In Fortschritte der Mineralogie (vol. 62, pp. 114-116). Naegele U Obermiller Johannesstrasse 3a, d 70176 Stuttgart, Germany: e Schweizerbart\'sche Verlags.
22. Keesmann, I., Bachmann, H., & Hauptmann, A. (1984b). Classification of iron-rich slags according to the phase-composition. Paper presented at the Fortschritt der Mineralogie.
23. Killick, D., & Fenn, T. (2012). Archaeometallurgy: The Study of Preindustrial Mining and Metallurgy. Annual Review of Anthropology, 41(1), 559-575. [DOI:10.1146/annurev-anthro-092611-145719]
24. Koleini, F., De Beer, F., Schoeman, M. H. A., Pikirayi, I., Chirikur, S., Nothnagel, G., & Radebe, J. M. (2012). Efficiency of neutron tomography in visualizing the internal structure of metal artefacts from Mapungubwe museum collection with the aim of conservation. Journal of Cultural Heritage, 13(3), 246-253. [DOI:10.1016/j.culher.2011.11.001]
25. Koleini, F., Prinsloo, L. C., Schoeman, M. H. A., Pikirayi, I., & Chirikure, S. (2013). Characterization of the corrosion layer on iron archaeological artefacts from K2 (825–1220 AD), an archaeological site in South Africa. Studies in Conservation, 58(3), 274-282. [DOI:10.1179/2047058412Y.0000000044]
26. Košler, J., Fonneland, H., Sylvester, P., Tubrett, M., & Pedersen, R.-B. (2002). U–Pb dating of detrital zircons for sediment provenance studies a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology, 182(2), 605-618. [DOI:10.1016/S0009-2541(01)00341-2]
27. Lichtensteiger, T. (2002). Die petrologische Evaluation Im Einklang mit der Erde (pp. 193-208): Springer. [DOI:10.1007/978-3-642-59387-1_8]
28. Mannino, M., Thomas, K., Leng, M., Piperno, M., Tusa, S., & Tagliacozzo, A. (2007). Marine Resources in the Mesolithic and Neolithic at the Grotta Dell\'uzzo (Sicily): Evidence From Isotope Analyses Of Marine Shells*. Archaeometry, 49(1), 117-133. [DOI:10.1111/j.1475-4754.2007.00291.x]
29. Mendoza Cuevas, A., Bernardini, F., Gianoncelli, A., & Tuniz, C. (2015). Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrometry, 44(3), 105-115. [DOI:10.1002/xrs.2585]
30. Ranjbar, H., Masoumi, F., & Carranza, E. (2011). Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. International Journal of Remote Sensing, 32(12), 3309-3327. [DOI:10.1080/01431161003745665]
31. Reinhard, K. J. (1992). Parasitology as an interpretive tool in archaeology. American antiquity, 231-245. [DOI:10.2307/280729]
32. Riederer, J. (2004). Thin section microscopy applied to the study of archaeological ceramics. Hyperfine interactions, 154(1-4), 143-158. [DOI:10.1023/B:HYPE.0000032029.24557.b1]
33. Willmott, H., Miller, I., & Jackson, C. (2012). Glass Recipes and the Output from a 19th-Century Glass Works: Examples from Percival, Vickers & Co. Ltd, Manchester. Industrial Archaeology Review, 34(1), 51-64. [DOI:10.1179/0309072812Z.0000000003]
34. Zacharias, N., Schwedt, A., i Garrigós, J. B., Michael, C. T., Mommsen, H., & Kilikoglou, V. (2007). A contribution to the study of post-depositional alterations of pottery using TL dating analysis. Journal of Archaeological Science, 34(11), 1804-1809. [DOI:10.1016/j.jas.2006.12.017]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb