Archaeo-metallurgical Analysis of Iron Slag Belonging to the Archaeological Site of Sirvan - Elam province SW Iran - Journal of Research on Archaeometry

قابل توجه نویسندگان محترم، مقالاتی که از تاریخ 1404/07/13 برای نشریه ارسال می شوند،  شامل پرداخت هزینه بررسی نخواهند شد.

------------------------------------------ ---------------------------------------
year 10, Issue 1 (2024)                   JRA 2024, 10(1): 51-68 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noghnai S, Sharifinia A, Shokrzadeh M, Khanzadi M J. (2024). Archaeo-metallurgical Analysis of Iron Slag Belonging to the Archaeological Site of Sirvan - Elam province, SW Iran. JRA. 10(1), 51-68. doi:10.61882/jra.10.1.424
URL: http://jra-tabriziau.ir/article-1-424-en.html
1- Faculty of Conservation, Iran University of Art, Tehran, Iran , somayeh.noghani@yahoo.com
2- The Head of Sirvan National Heritage Site, Ilam, Iran
3- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
4- Sirvan National Heritage Site, Ilam, Iran
Abstract:   (2990 Views)
During the archeological investigations and speculations for the geo-archaeological studies of Sirvan historical site in Elam province, pieces were obtained that indicate the remains of pyrometallurgical activities in this site. Five samples of these fragments were selected to perform archaeometric studies and determine their chemical and mineralogical characteristics. The main objectives of this study are identifying the type of extracted metal, investigating melting process and estimating the furnace temperature and the efficiency of this process on investigated samples at the time. The analysis of sample’s structures was done through XRD, XRF and metallographic microscope were the main objectives of this research. The results of this research show that according to the identification of the main phases of Wüstite, magnetite and hematite, these pieces are iron smelting slags. The presence of Wüstite and calcite in all samples indicates that the furnace temperature range was at least 570℃ to about 900℃. Also, due to the high amounts of iron oxide remaining in the slag, the type of furnace is from the category of bloomery furnaces with low efficiency, and calcite is used as a flux. The presence of different amounts of Wüstite, magnetite and hematite phases in these samples indicates that these slags are formed in different parts and atmospheric conditions of the furnace in the reduction-oxidation condition. Considering a few research carried out in the field of ancient metalworking in the western regions of Iran and especially the historical sites of Elam province, this research is the beginning of conducting comparative studies in the field of iron smelting and mining technology in the west of central Zagros regions.
Full-Text [PDF 2187 kb]   (1342 Downloads)    
Technical Note: Original Research | Subject: Archaeometry
Received: 2024/05/9 | Accepted: 2024/06/28 | Published: 2024/06/29 | ePublished: 2024/06/29

References
1. Ardebili, O. (2019). Report on the status of iron in Iran and the world, Geological and Mineral Exploration Organization of Iran. [In Persian]
2. Abbasnejad Seresty, R. (2008). Iron Archaeometallurgy in the Triangle of the Sirdjān, Neiriz and Shahr- e- Bābak, The International Journal of Humanities, 16(1), 1-14. [In Persian]
3. Amini, S., Fotuhi Dilanchi, E. & Derafshi, K. (2023). Investigations at "Chakherbaz Holes", Western Iran, Kurdistan: A Possible Ancient Mining/Smelting Site. Sustainable Earth Review, 3(3), 77-90. [DOI:10.48308/ser.2024.234381.1033.]
4. Blakelock, E., Martinon-Torres, M., Veldhuijzen, H. A., & Young, T. (2009). Slag inclusions in iron objects and the quest for provenance: an experiment and a case study. Journal of Archaeological Science, 36(8), 1745-1757. DOI:10.1016/j.jas.2009.03.032. [DOI:10.1016/j.jas.2009.03.032]
5. Caterina, I., Maurizio, T., & Giuseppe, S. (2008). Archaeometallurgy in Messina: iron slag from a dig at block P, laboratory analyses and interpretation. Mediterranean Archaeology and Archaeometry, 8(1), 49-60.
6. Charlton, M., & Humphris, J. (2019). Exploring ironmaking practices at Meroe, Sudan-a comparative analysis of archaeological and experimental data. Archaeological and Anthropological Sciences, 11, 895-912. DOI:10.1007/s12520-017-0578-2. [DOI:10.1007/s12520-017-0578-2]
7. Das, A., Kundu, A., & Rawat, P. V. S. (2016). Mineral compositional studies of slag from Galla village, Uttarakhand, India. Current Science, 1162-1165.
8. David, N., Heimann, R., Killick, D., & Wayman, M. (1989). Between bloomery and blast furnace: Mafa iron-smelting technology in North Cameroon. African Archaeological Review, 7(1), 183-208. https://doi.org/10.1007/BF01116843 [DOI:10.1007/BF01116843.]
9. De Caro, T., Riccucci, C., Parisi, E.I., Renzulli, A., Del Moro, S., Santi, P., & Faraldi, F. (2013). Archaeo-metallurgical studies of tuyeres and smelting slags found at Tharros (north-western Sardinia, Italy). Applied Physics A, 113, 933-943. [DOI:10.1007/s00339-013-7720-5]
10. Eekelers, K., Degryse, P., & Muchez, P. (2016). Petrographic investigation of smithing slag of the Hellenistic to Byzantine city of Sagalassos (SW-Turkey). American Mineralogist, 101(5), 1072-1083. https://doi.org/10.2138/am-2016-5390 [DOI:10.2138/am-2016-5390.]
11. Elikay Dehno, S., Akbari, T., Garavand, M., Rostami Charati, F., & Rahimi, F. (2022). Metallurgical Studies on Samples from Central Zagros, Northern Kuhdasht. Journal of Archaeology and Archaeometry, 1(2), 81-91. 10.30495/JAA.2022.694797.
12. Emami, M., & Karamad, Z. (2012). Chemical-mineralogical studies on iron crucibles from Chahak, Iran. In Proceedings of the 39th International Symposium for Archaeometry, 86-90.
13. Emami, M. (2004). The importance of mineralogical studies on ancient smelting slags in the paragenesis of metallic minerals. Iran Mining Engineering Conference, Tarbiat Modares University, Tehran, 1-15. [In Persian]
14. Hourri, F., Dekayir, A., & Makdoun, M. (2017). Mineralogy and chemical compositions of ancient slags from Volubilis archaeological site and Awam ancient mine (Morocco). STAR: Science and Technology of Archaeological Research, 3(2), 238-244. DOI:10.1080/20548923.2018.1433269. [DOI:10.1080/20548923.2018.1433269]
15. Iles, L. E. (2017). African iron production and iron-working technologies: Methods. [DOI:10.1093/acrefore/9780190277734.013.212]
16. Jung, D., Kwon, H., & Cho, N. (2022). Smithing Processes Based on Hammer Scale Excavated from the Third-to Fourth-Century Ancient Iron-Making Sites of the Korean Peninsula. Materials, 15(12), 4188. DOI:10.3390/ma15124188. [DOI:10.3390/ma15124188]
17. Kądziołka, K., Pietranik, A., Kierczak, J., Potysz, A., & Stolarczyk, T. (2020). Towards better reconstruction of smelting temperatures: Methodological review and the case of historical K-rich Cu-slags from the Old Copper Basin, Poland. Journal of Archaeological Science, 118, 105142. https://doi.org/10.1016/j.jas.2020.105142 [DOI:10.1016/j.jas.2020.105142.]
18. Karamzadeh, F., & Yousefvand, Y. (2021). Re-identification of the Sassanid-Islamic city of Sirvan based on historical texts and archaeological evidence. Research paper on the history of Islamic civilization, 54(1), 259-283. 10.22059/JHIC.2021.310620.654183. [In Persian]
19. Khanzadi, M. J. (2019). Speculation for the purpose of geo-archaeological studies of Sirvan historical site, National Heritage Site of Sirvan historical site, (unpublished). [In Persian]
20. Khojasteh Behzadi, N., Mafi, F., & Emami, S. M. (2023). The Study of Mining and Metallurgy in the Central Part of Bam County Based on Archaeological Surveys and Historical Sources. Journal of Archaeological Studies, 15(2), 57-73. [DOI:10.22059/jarcs.2023.358920.143203.]
21. Kostova, B., Paneva, D., Cherkezova-Zheleva, Z., Mihaylova, K., & Dumanov, B. (2023). Ancient Metallurgical Iron Slags-Chemical, Powder X-ray Diffraction and Mössbauer Spectroscopic Study. Crystals, 13(6), 888. https://doi.org/10.3390/cryst13060888 [DOI:10.3390/cryst13060888.]
22. Kulkova, M. A., Kashuba, M. T., Kulkov, A. M., Ryabkova, T. V., Vetrova, M. N., Zanoci, A., & Bubnova, O. V. (2022). Iron sources and technologies during the Early Iron Age in the Northern Pontic region. In Geoarchaeology and Archaeological Mineralogy: Proceedings of 7th Geoarchaeological Conference, Miass, Russia, 19-23 October 2020, 11-28. Springer International Publishing. [DOI:10.1007/978-3-030-86040-0_2]
23. Magee, P. (2005). The chronology and environmental background of Iron Age settlement in Southeastern Iran and the question of the origin of the Qanat irrigation system. Iranica Antiqua, 40, pp.217-231. DOI:10.2143/IA.40.0.583210. [DOI:10.2143/IA.40.0.583210]
24. Maldonado, B., & Rehren, T. (2009). Early copper smelting at Itziparátzico, Mexico. Journal of Archaeological Science, 36(9), 1998-2006. https://doi.org/10.1016/j.jas.2009.05.019 [DOI:10.1016/j.jas.2009.05.019.]
25. Merico, P., Faccoli, M., La Corte, D., & Cornacchia, G. (2023). Archaeometallurgical Characterization of Two Lombard Early Medieval Bloomery Slags from Ponte di Val Gabbia I Site (Northern Italy). Metals, 13(5), 984. https://doi.org/10.3390/met13050984 [DOI:10.3390/met13050984.]
26. Moorey, P. R. S. (1991). The decorated ironwork of the Early Iron Age attributed to Luristan in western Iran. Iran, 29(1), 1-12. https://www.jstor.org/stable/4299844. [DOI:10.2307/4299844]
27. Morel, M., & Serneels, V. (2021). Interpreting the Chemical Variability of Iron Smelting Slag: A Case Study from Northeastern Madagascar. Minerals, 11(8), p.900. https://doi.org/10.3390/min11080900 [DOI:10.3390/min11080900.]
28. Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., & Ghaderi, M. (2015). Iron and Fe-Mn mineralisation in Iran: implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62(2), 211-241. https://doi.org/10.3390/min11080900 [DOI:10.3390/min11080900.]
29. Oh, G.S., & Jung, W. S. (2023). A study on the history of advances in ancient iron making based on correlation of oxides in slag. Korean Journal of Metals and Materials, 61(4), 291 - 300. [DOI:10.3365/KJMM.2023.61.4.291]
30. Piatak, N. M., Parsons, M. B., & Seal II, R. R. (2015). Characteristics and environmental aspects of slag: A review. Applied Geochemistry, 57, 236-266. https://doi.org/10.1016/j.apgeochem.2014.04.009 [DOI:10.1016/j.apgeochem.2014.04.009.]
31. Pigott, V. C. (2004). Hasanlu and the Emergence of Iron in Early 1st Millennium BC Western Iran. Persia's Ancient Splendour, Mining, Handicraft and Archaeology.
32. Portillo-Blanco, H., Zuluaga, M. C., Ortega, L. A., Alonso-Olazabal, A., Cepeda-Ocampo, J. J., & Martínez Salcedo, A. (2020). Mineralogical characterization of slags from the Oiola site (Biscay, Spain) to assess the development in bloomery iron smelting technology from the Roman period to the Middle Ages. Minerals, 10(4), 321. https://doi.org/10.3390/min10040321 [DOI:10.3390/min10040321.]
33. Rehren, T., Charlton, M., Chirikure, S., Humphris, J., Ige, A., & Veldhuijzen, H. A. (2007). Decisions set in slag: the human factor in African iron smelting. Metals and mines: studies in archaeometallurgy, 211, 218.
34. Saedmucheshi, A. (2021). A Review on the Early Iron Age in Central Zagros. Journal of Archaeological Studies, 13(1), 65-90. [DOI:10.22059/jarcs.2020.300093.142861. [In Persian]]
35. Salimi, S., AmirKhiz, Ch., & Beheshti, A. (2018). An investigation of Metal Working Sites in Mahabad and Satdasht, West Azarbayjan, westrn Iran (2018-2019).
36. Seok, S. H., Jung, S. M., Lee, Y. S., & Min, D. J. (2007). Viscosity of highly basic slags. Isij International, 47(8), 1090-1096. https://doi.org/10.2355/isijinternational.47.1090 [DOI:10.2355/isijinternational.47.1090.]
37. Seyedein, S., Kouhpar, M. M., Neyestani, J., & Omran, N. R. (2014). Archaeometallurgy in Sasanian cities: Darabgird and Bishapour, Fars province, Iran. Antiquity, 88, 339.
38. Shushtarian, F., Adabi, M. H., Sadeghi, A., Hosseini Barzi, M. & Lotfpour, M. (2011). Primary mineralogy of the Ilam formation based on geochemical data in sample section, Pion anticline and underground section of Danan-a. Journal of Stratigraphy and Sedimentology Research, 27(3), 39-68. 20.1001.1.20087888.1390.27.3.3.3. [In Persian]
39. Sporel, J. S. (2004). A brief history of iron and steel production. http://metal2016.tanger.cz/en/
40. Stepanov, I. S., Weeks, L., Franke, K. A., Overlaet, B., Alard, O., Cable, C. M., Al Aali, Y. Y., Boraik, M., Zein, H., & Grave, P. (2020). The provenance of early Iron Age ferrous remains from southeastern Arabia. Journal of Archaeological Science, 120, 105192. 10.1016/j.jas.2020.105192. [DOI:10.1016/j.jas.2020.105192]
41. Stepanov, I., Borodianskiy, K., & Eliyahu-Behar, A. (2019). Assessing the quality of iron ores for bloomery smelting: laboratory experiments. Minerals, 10(1), 33. https://doi.org/10.3390/min10010033 [DOI:10.3390/min10010033.]
42. Tholander, E., & Blomgren, S. (1985). On the classification of ancient slags by microstructure examination. Iskos, 5, 415-425.
43. Thornton, C. P., Rehren, T., & Pigott, V. C. (2009). The production of speiss (iron arsenide) during the Early Bronze Age in Iran. Journal of Archaeological Science, 36(2), 308-316. https://doi.org/10.1016/j.jas.2008.09.017 [DOI:10.1016/j.jas.2008.09.017.]
44. Török, B., Kovács, Á., Barkóczy, P., & Kristály, F. (2012). Complex archaeometrical examination of iron tools and slag from a Celtic settlement in the Carpathian Basin. In Proceedings of the 39th International Symposium for Archaeometry, Leuven, 125-134.
45. Veldhuijzen, H. A., & Rehren, T. (2006). Iron Smelting Slag Formation at Tell Hammeh (Al-Zarqa), Jordan. Institucion 'Fernando el Catolico '(CSIC) Excma. Diputacion de Zaragoza.
46. Verdeş, B., Chira, I., Virgolici, M., & Moise, V. (2012). Thermal stability of fayalite system formation at the interface between steel and mould. UPB Scientific Bulletin, Series B: Chemistry and Materials Science 74(2).
47. Zhang, Z. (2023). The Characteristics and Reduction of Wustite. In Iron Ores and Iron Oxides-New Perspectives. IntechOpen. DOI: 10.5772/intechopen.1001051. [DOI:10.5772/intechopen.1001051]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb