Investigating the Antimicrobial Activity and Toxicity of Green Synthesized Silver and Zinc Nanoparticles with the Aim of Controlling the Biodeterioration of Cultural Heritage - Journal of Research on Archaeometry

قابل توجه نویسندگان محترم، مقالاتی که از تاریخ 1404/07/13 برای نشریه ارسال می شوند،  شامل پرداخت هزینه بررسی نخواهند شد.

------------------------------------------ ---------------------------------------
year 10, Issue 1 (2024)                   JRA 2024, 10(1): 203-216 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noohi N, Abbasalipour M. (2024). Investigating the Antimicrobial Activity and Toxicity of Green Synthesized Silver and Zinc Nanoparticles with the Aim of Controlling the Biodeterioration of Cultural Heritage. JRA. 10(1), 203-216. doi:10.61882/jra.10.1.414
URL: http://jra-tabriziau.ir/article-1-414-en.html
1- Research Center for Conservation of Cultural Relics, Research Institute of Cultural Heritage & Tourism, Tehran, Iran , nasrinnoohi@gmail.com
2- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (2534 Views)
Cultural heritage is always subject to biodeterioration by microorganisms, and their control and containment are essential. Metal nanoparticles can be a good option to solve this problem. Following the production and identification of silver and zinc nanoparticles by the green method, in this study, we aimed to evaluate the antimicrobial activity of the synthesized nanoparticles and their toxic effect on normal human cells for use in the field of cultural heritage. To investigate the antimicrobial effect of silver and zinc nanoparticles, 4 bacterial strains, B. subtilis, Ps.aeruginosa, B. licheniformis and Micrococcus and 5 fungal strains, Aspergillus, Penicillium Alternaria, Chaetomium, and Cladosporium were tested. For this purpose, agar diffusion and liquid dilution tests (to determine MIC) were performed, and in the next step, MBC (for bacteria) and MFC (for fungi) were determined. Also, the cytotoxicity of nanoparticles was evaluated on HDF cell lines (normal skin cells) using the MTT method. Silver nanoparticles showed antimicrobial effect against all tested bacterial and fungal strains. Out of the 5 fungal strains studied, only Chaetomium fungus was sensitive to zinc nanoparticles, On the other hand, all tested bacterial strains except Ps. aeruginosa were sensitive to zinc nanoparticles. Silver nanoparticles showed concentration-dependent cytotoxic activity against HDF, but zinc nanoparticles did not show a toxic effect on HDF cells. Among the two investigated nanoparticles, silver nanoparticles have a high potential to be used as an antimicrobial agent. However, zinc nanoparticles can be considered as a suitable candidate for use against bacterial contamination. Considering the toxic effect of silver nanoparticles on normal human skin cells, this issue should be seriously considered during the process of disinfecting objects, in terms of preserving the health and safety of conservators and visitors.
Full-Text [PDF 1474 kb]   (886 Downloads)    
Technical Note: Original Research | Subject: Conservation Science
Received: 2024/04/25 | Accepted: 2024/06/27 | Published: 2024/06/29 | ePublished: 2024/06/29

References
1. Adamska, E., Niska, K., Wcisło, A., & Grobelna, B. (2021). Characterization and Cytotoxicity Comparison of Silver-and Silica-Based Nanostructures. Materials, 14(17), 4987. [DOI:10.3390/ma14174987]
2. Afsharpour, M., & Imani, S. (2017). Preventive protection of paper works by using nanocomposite coating of zinc oxide. Journal of Cultural Heritage, 25, 142-148. [DOI:10.1016/j.culher.2016.12.007]
3. Akhtar, M. J., Ahamed, M., Kumar, S., Khan, M. M., Ahmad, J., & Alrokayan, S. A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International journal of nanomedicine, 7, 845. [DOI:10.2147/IJN.S29129]
4. Aldosari, M. A., Darwish, S. S., Adam, M. A., Elmarzugi, N. A., & Ahmed, S. M. (2019). Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites. Archaeological and Anthropological Sciences, 11(7), 3407-3422. [DOI:10.1007/s12520-018-0762-z]
5. Ambaya, M., Saeed, F., & Mohammed, W. (2022). Comparison Between Green Synthesis and Chemical Synthesis of Silver Nanoparticles: Characterization and Their Antimicrobial Activities. EasyChair, 2516-2314).
6. Arikan, S. (2007). Current status of antifungal susceptibility testing methods. Medical mycology, 45(7), 569-587. [DOI:10.1080/13693780701436794]
7. Becerra, J., Mateo, M., Ortiz, P., Nicolas, G., & Zaderenko, A. P. (2019). Evaluation of the applicability of nano-biocide treatments on limestones used in cultural heritage. Journal of Cultural Heritage, 38, 126-135. [DOI:10.1016/j.culher.2019.02.010]
8. Becerra, J., Zaderenko, A., Sayagués, M. J., Ortiz, R., & Ortiz, P. (2018). Synergy achieved in silver-TiO2 nanocomposites for the inhibition of biofouling on limestone. Building and Environment, 141, 80-90. [DOI:10.1016/j.buildenv.2018.05.020]
9. Boccalon, E., Nocchetti, M., Pica, M., Romani, A., & Sterflinger, K. (2021). Hydrogels: A 'stepping stone'towards new cleaning strategies for biodeteriorated surfaces. Journal of Cultural Heritage, 47, 1-11. [DOI:10.1016/j.culher.2020.07.008]
10. Branysova, T., Demnerova, K., Durovic, M., & Stiborova, H. (2022). Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades. Journal of Cultural Heritage, 55, 245-260. [DOI:10.1016/j.culher.2022.03.013]
11. Carrillo-González, R., Martínez-Gómez, M. A., González-Chávez, M. d. C. A., & Mendoza Hernández, J. C. (2016). Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method. Science of the Total Environment, 565, 872-881. [DOI:10.1016/j.scitotenv.2016.02.110]
12. CLSI. (2012a). Performance standards for antimicrobial disk susceptibility tests; approved standard. In (Vol. 950): Clinical and Laboratory Standards Institute Wayne, PA.
13. CLSI. (2012b). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. In (Vol. 32): Clinical and Laboratory Standards Institute Wayne, PA.
14. CLSI. (2010). Method for Antifungal Disk Diffusion Susceptibility Testing of Non-dermatophyte Filamentous Fungi, Approved guideline, CLSI document M51- A. Clincal and Laboratory Standards Institute, 950 West Valley Roead, Suite 2500, Wayne, Pennsylvania 19087, USA.
15. CLSI. (2008). Reference Method for Broth Dilution Antifungal Susceptibility Testing Filamentous Fungi, Approved Standard, 2nd ed., CLSI document M38-A2, 950 West Valley Roadn Suite 2500,Wayne, Pennsylvania 19087, USA.
16. CLSI. (1998). Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline, CLSI document M26-A. Clinical and Laboratory Standards Institute, 950 West Valley Roadn Suite 2500,Wayne, Pennsylvania 19087, USA.
17. Coutinho, M., Miller, A., Martin‐Sanchez, P. M., Mirão, J., Gomez‐Bolea, A., Machado‐Moreira, B., Cerqueira‐Alves, L., Jurado, V., Saiz‐Jimenez, C., & Lima, A. (2016). A multiproxy approach to evaluate biocidal treatments on biodeteriorated majolica glazed tiles. Environmental microbiology, 18(12), 4794-4816. [DOI:10.1111/1462-2920.13380]
18. Di Carlo, E., Barresi, G., & Palla, F. (2022). Biodeterioration. In Biotechnology and Conservation of Cultural Heritage. Springer International Publishing, 1-30. [DOI:10.1007/978-3-030-97585-2_1]
19. Dowlath, M. J. H., Musthafa, S. A., Khalith, S. M., Varjani, S., Karuppannan, S. K., Ramanujam, G. M., Arunachalam, A. M., Arunachalam, K. D., Chandrasekaran, M., & Chang, S. W. (2021). Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles. Environmental Research, 201, 111585. [DOI:10.1016/j.envres.2021.111585]
20. Evans, E. G. V., & Richardson, M. D. (1989). Medical mycology. A practical approach. IRL press.
21. Fouda, A., Abdel-Maksoud, G., Abdel-Rahman, M. A., Eid, A. M., Barghoth, M. G., & El-Sadany, M. A.-H. (2019). Monitoring the effect of biosynthesized nanoparticles against biodeterioration of cellulose-based materials by Aspergillus niger. Cellulose, 26(11), 6583-6597. [DOI:10.1007/s10570-019-02574-y]
22. Franco-Castillo, I., Hierro, L., de la Fuente, J. M., Seral-Ascaso, A., & Mitchell, S. G. (2021). Perspectives for antimicrobial nanomaterials in cultural heritage conservation. Chem, 7(3), 629-669. [DOI:10.1016/j.chempr.2021.01.006]
23. Gadd, G. M., Fomina, M., & Pinzari, F. (2024). Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiology and Molecular Biology Reviews, 200-222. [DOI:10.1128/mmbr.00200-22]
24. Goffredo, G. B., Accoroni, S., Totti, C., Romagnoli, T., Valentini, L., & Munafò, P. (2017). Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces. Building and Environment, 112, 209-222. [DOI:10.1016/j.buildenv.2016.11.034]
25. Gutarowska, B., Skora, J., Zduniak, K., & Rembisz, D. (2012). Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. International Biodeterioration & Biodegradation, 68, 7-17. [DOI:10.1016/j.ibiod.2011.12.002]
26. Jia, M., Zhang, X., Weng, J., Zhang, J., & Zhang, M. (2019). Protective coating of paper works: ZnO/cellulose nanocrystal composites and analytical characterization. Journal of Cultural Heritage, 38, 64-74. [DOI:10.1016/j.culher.2019.02.006]
27. Kakakhel, M. A., Wu, F., Gu, J.-D., Feng, H., Shah, K., & Wang, W. (2019). Controlling biodeterioration of cultural heritage objects with biocides: A review. International Biodeterioration & Biodegradation, 143, 104721. [DOI:10.1016/j.ibiod.2019.104721]
28. Liu, Y.-j., He, L.-l., Mustapha, A., Li, H., Hu, Z., & Lin, M.-s. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of applied microbiology, 107(4), 1193-1201. [DOI:10.1111/j.1365-2672.2009.04303.x]
29. Luo, Z., Dong, K., Guo, M., Lian, Z., Zhang, B., & Wei, W. (2018). Preparation of Zinc Oxide Nanoparticles‐Based Starch Paste and its Antifungal Performance as a Paper Adhesive. Starch‐Stärke, 70(7-8), 1700211. [DOI:10.1002/star.201700211]
30. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63. [DOI:10.1016/0022-1759(83)90303-4]
31. Noohi, N., & Papizadeh, M. (2023). Study of biodeterioration potential of microorganisms isolated in the paintings storeroom of Mouze Makhsus museum, Golestan palace, Tehran. Studies in Conservation, 68(7), 720-730. DOI:10.1080/00393630.2022.2118269 [DOI:10.1080/00393630.2022.2118269]
32. Pietrzak, K., Otlewska, A., Danielewicz, D., Dybka, K., Pangallo, D., Kraková, L., Puškárová, A., Bučková, M., Scholtz, V., & Ďurovič, M. (2017). Disinfection of archival documents using thyme essential oil, silver nanoparticles misting and low temperature plasma. Journal of Cultural Heritage, 24, 69-77. [DOI:10.1016/j.culher.2016.10.011]
33. Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R., & Srinivasan, P. (2013). Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochemistry, 48(2), 317-324. [DOI:10.1016/j.procbio.2012.12.013]
34. Reyes-Estebanez, M., Ortega-Morales, B. O., Chan-Bacab, M., Granados-Echegoyen, C., Camacho-Chab, J. C., Pereañez-Sacarias, J. E., & Gaylarde, C. (2018). Antimicrobial engineered nanoparticles in the built cultural heritage context and their ecotoxicological impact on animals and plants: A brief review. Heritage Science, 6(1), 1-11. [DOI:10.1186/s40494-018-0219-9]
35. Ruffolo, S. A., De Leo, F., Ricca, M., Arcudi, A., Silvestri, C., Bruno, L., Urzì, C., & La Russa, M. F. (2017). Medium-term in situ experiment by using organic biocides and titanium dioxide for the mitigation of microbial colonization on stone surfaces. International Biodeterioration & Biodegradation, 123, 17-26. [DOI:10.1016/j.ibiod.2017.05.016]
36. Schifano, E., Cavallini, D., De Bellis, G., Bracciale, M. P., Felici, A. C., Santarelli, M. L., Sarto, M. S., & Uccelletti, D. (2020). Antibacterial effect of zinc oxide-based nanomaterials on environmental biodeteriogens affecting historical buildings. Nanomaterials, 10(2), 335. [DOI:10.3390/nano10020335]
37. Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16(1), 1-28. [DOI:10.1186/s12951-018-0334-5]
38. Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). 'Green'synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), 1-24. [DOI:10.1186/s12951-018-0408-4]
39. Soria-Castro, M., la Rosa-García, D., Quintana, P., Gómez-Cornelio, S., Sierra-Fernandez, A., & Gómez-Ortíz, N. (2019). Broad spectrum antimicrobial activity of Ca (Zn (OH) 3) 2· 2H2O and ZnO nanoparticles synthesized by the sol-gel method. Journal of Sol-Gel Science and Technology, 89(1), 284-294. [DOI:10.1007/s10971-018-4759-y]
40. Van der Werf, I. D., Ditaranto, N., Picca, R. A., Sportelli, M. C., & Sabbatini, L. (2015). Development of a novel conservation treatment of stone monuments with bioactive nanocomposites. Heritage Science, 3(1), 1-9. [DOI:10.1186/s40494-015-0060-3]
41. Yadav, R., & Preet, S. (2023). Comparative assessment of green and chemically synthesized glutathione capped silver nanoparticles for antioxidant, mosquito larvicidal and eco-toxicological activities. Scientific Reports, 13(1), 8152. [DOI:10.1038/s41598-023-35249-7]
42. Zamani, S., Fazilati, M., Hadian, M., Nazem, H., & Noohi, N. (2022). Evaluation of anticancer potential of silver chloride nanoparticles biosynthesized by Penicillium chrysogenum. Infection Epidemiology and Microbiology, 8(2), 159-167. [DOI:10.52547/iem.8.2.159]
43. Zhang, X.-F., Liu, Z.-G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International journal of molecular sciences, 17(9), 1534. [DOI:10.3390/ijms17091534]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb