Studying the Products and Factors Involved in Corrosion of Brass Alloy in Four Qajar Era Manuscripts - Journal of Research on Archaeometry

قابل توجه نویسندگان محترم، مقالاتی که از تاریخ 1404/07/13 برای نشریه ارسال می شوند،  شامل پرداخت هزینه بررسی نخواهند شد.

------------------------------------------ ---------------------------------------
year 10, Issue 1 (2024)                   JRA 2024, 10(1): 167-188 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdolalizadeh M, Mohammadi Achachluei M, Oudbashi O. (2024). Studying the Products and Factors Involved in Corrosion of Brass Alloy in Four Qajar Era Manuscripts. JRA. 10(1), 167-188. doi:10.61882/jra.10.1.397
URL: http://jra-tabriziau.ir/article-1-397-en.html
1- Faculty of Conservation & Restoration, Art University of Isfahan, Isfahan, Iran
2- Faculty of Conservation & Restoration, Art University of Isfahan, Isfahan, Iran , m.mohammadi912@yahoo.com
3- Department of Conservation, University of Gothenburg, Gothenburg, Sweden
Abstract:   (3249 Views)
Copper and its alloys are prone to corrosion influenced by environmental factors. Corrosion can influence a lot of characteristics of historical artifacts, such as their apparent features and their visual appeal. It is common to observe proximity of metal and organic materials in historical artifacts, particularly in gilded manuscripts, where metal deterioration occurs from corrosive agents such as carboxylic acids, leading to greenish corrosion byproducts. This study examines four manuscripts from the Qajar era featuring metal decorations to identify the factors involved in corrosion of the metal areas. In the analyses conducted in this research FESEM-EDS, ATR-FTIR, Raman and pH measurement methods were used. The study identified a type of copper alloy in all four historical artifacts, which resembles brass. Based on samples derived from all four historical manuscripts, the adhesive agent that attached metal to the paper substrate was identified to be Arabic gum. The corrosion products were recognized as metal carboxylates, including copper and zinc carboxylates. Formates and acetates were also detected within the structure of the greenish corrosion byproducts. Areas with oily stains which were found in two of the samples, exhibited more pronounced corrosion, emphasizing the destructive impact of oil in formation of metal soaps, as also noted in the research literature. The corrosion byproducts in the metal areas have diminished the golden appearance of the decorations and penetrated the paper fibers. The acidity test revealed that the pH levels in the corroded areas were around one unit lower than in areas without metal presence. This difference is a significant factor in deteriorating the cellulose substrate through acid hydrolysis.
Full-Text [PDF 2578 kb]   (947 Downloads)    
Technical Note: Original Research | Subject: Conservation Science
Received: 2024/01/22 | Accepted: 2024/06/2 | Published: 2024/06/29 | ePublished: 2024/06/29

References
1. AbdolAlizadeh M., Nemati Babaylou A., & Mohammadi M. A. (2017). Application of SEM-EDX in the identification of pigments in a Qajar document. National Conference on Pigments, Environment. Tehra [in Persian].
2. Abu-Dalo, M. A., Othman, A. A., & Al-Rawashdeh, N. A. F. (2012). Exudate gum from acacia trees as green corrosion inhibitor for mild steel in acidic media. International Journal of Electrochemical Science, 7(10), 9303-9324. [DOI:10.1016/S1452-3981(23)16199-2]
3. Aceto, M., Agostino, A., Boccaleri, E., Crivello, F., & Cerutti Garlanda, A. (2010). Identification of copper carboxylates as degradation residues on an ancient manuscript. Journal of Raman Spectroscopy, 41(11), 1434-1440. [DOI:10.1002/jrs.2650]
4. Aceto, M., Agostino, A., Boccaleri, E., Crivello, F., & Garlanda, A. C. (2006). Evidence for the degradation of an alloy pigment on an ancient Italian manuscript. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 37(10), 1160-1170. [DOI:10.1002/jrs.1604]
5. Ahmadi, H., Abed, E. A., Mortazavi, M., & Mousavi, M. J. (2014). The study of gilding imitations in historic manuscripts: an investigation of degradation process of golden pigments and substrate paper [in Persian].
6. Bahr al-Uloomi, F., & Bahadri. (2013). golden or like gilded, A Study of Chrysographic Lines in a few Surviving Folios of the Quran. Baharestan, year 12, no 18 & 19 [in Persian].
7. Banik, G., Stachelberger, H., & Waechter, O. (1982). Investigation of the destructive action of copper pigments on paper and consequences for conservation. Studies in Conservation, 27(sup1), 75-78. [DOI:10.1179/sic.1982.27.Supplement-1.75]
8. Bashir, M., & Haripriya, S. (2016). Assessment of physical and structural characteristics of almond gum. International Journal of Biological Macromolecules, 93, 476-482. [DOI:10.1016/j.ijbiomac.2016.09.009]
9. Bastidas, D. M., & La Iglesia, V. M. (2007). Organic acid vapours and their effect on corrosion of copper: a review. Corrosion engineering, science and technology, 42(3), 272-280. [DOI:10.1179/174327807X214590]
10. Bastidas, J. M., López‐Delgado, A., Cano, E., Polo, J. L., & López, F. A. (2000). Copper corrosion mechanism in the presence of formic acid vapor for short exposure times. Journal of the Electrochemical Society, 147(3), 999. [DOI:10.1149/1.1393303]
11. Boyatzis, S. C., Fragkos-Livanios, L., Giannoulaki, M., & Filopoulou, A. (2023). Infrared spectroscopy reveals the reactivity of fatty acids on copper surfaces and its implications for cultural heritage objects. Heritage Science, 11(1), 196. [DOI:10.1186/s40494-023-01023-1]
12. Burmester, A., Koller, J., & Black, J. (1987, July). Known and new corrosion products on bronzes: their identification and assessment, particularly in relation to organic protective coatings. In Recent advances in the conservation and analysis of artifacts. Jubilee conservation conference, London 6-10 July 1987 (pp. 97-104).
13. Buse, J., Otero, V., & Melo, M. J. (2019). New insights into synthetic copper greens: the search for specific signatures by Raman and infrared spectroscopy for their characterization in medieval artworks. Heritage, 2(2), 1614-1629. [DOI:10.3390/heritage2020099]
14. Carter Iii, R. O., Poindexter, B. D., & Weber, W. H. (1991). Vibrational spectra of copper formate tetrahydrate, copper formate dihydrate and three anhydrous forms of copper formate. Vibrational spectroscopy, 2(2-3), 125-134. [DOI:10.1016/0924-2031(91)85018-I]
15. Cohen, E. H. (2014). Metals in an acetic acid environmeit Indoor Pollution in Libraries and Archives. Materials Science II.
16. Conti, C., Striova, J., Aliatis, I., Possenti, E., Massonnet, G., Muehlethaler, C., ... & Positano, M. (2014). The detection of copper resinate pigment in works of art: contribution from Raman spectroscopy. Journal of Raman Spectroscopy, 45(11-12), 1186-1196. [DOI:10.1002/jrs.4455]
17. Cotte, M., Checroun, E., De Nolf, W., Taniguchi, Y., De Viguerie, L., Burghammer, M., ... & Susini, J. (2017). Lead soaps in paintings: friends or foes?. Studies in Conservation, 62(1), 2-23. https://doi.org/10.1080/00393630.2016.1232529 [DOI:10.1179/sic.2007.52.1.2]
18. Da Costa Carvalho, L. (2022). Beyond Copper Soaps: Characterization of Copper Corrosion Containing Organics. Springer. [DOI:10.1007/978-3-030-97892-1]
19. Deflorian, F., & Fedel, M. (2013). Electrochemical analysis of the degradation of lead alloy organ-pipes due to acetic acid. Journal of cultural heritage, 14(3), 254-260. [DOI:10.1016/j.culher.2012.06.002]
20. Duran, A., Herrera, L. K., De Haro, M. J., Perez-Rodriguez, J. L., & Justo, A. (2009). Study of degradation processes of metals used in some artworks from the cultural heritage of Andalusia, Spain. Revista de metalurgia, 45(4), 277-286. [DOI:10.3989/revmetalm.0827]
21. Eggert, G., & Fischer, A. (2021). The formation of formates: a review of metal formates on heritage objects. Heritage Science, 9(1), 1-13. [DOI:10.1186/s40494-021-00499-z]
22. Eggert, G., Wollmann, A., Schwahn, B., Hustedt-Martens, E., Barbier, B., & Euler, H. (2008). When glass and metal corrode together. In ICOM Committee for Conservation, 15th Triennial Conference, preprints, New Delhi. New Delhi: Allied Publishers (pp. 211-6).
23. Ferreira, E. S., Gros, D., Wyss, K., Scherrer, N. C., Zumbühl, S., & Marone, F. (2015). Faded shine…. The degradation of brass powder in two nineteenth century paintings. Heritage Science, 3, 1-11. [DOI:10.1186/s40494-015-0052-3]
24. Gençer, G. M. (2021). The Importance of Corrosion Protection of Metal-Containing Historical Artifacts and Common Methods Used for Preservation. International Journal of Environment and Geoinformatics, 8(4), 514-520. [DOI:10.30897/ijegeo.915698]
25. Gil, H., & Leygraf, C. (2007). Quantitative in situ analysis of initial atmospheric corrosion of copper induced by acetic acid. Journal of The Electrochemical Society, 154(5), C272. [DOI:10.1149/1.2715315]
26. Giumlia-Mair, A. (2020). Plating and surface treatments on ancient metalwork. Advances in Archaeomaterials, 1(1), 1-26. [DOI:10.1016/j.aia.2020.10.001]
27. Graedel, T. E., McCrory‐Joy, C., & Franey, J. P. (1986). Potential corrosion of metals by atmospheric organic acids. Journal of the Electrochemical Society, 133(2), 452. [DOI:10.1149/1.2108599]
28. Gulotta, D., Goidanich, S., Bertoldi, M., Bortolotto, S., & Toniolo, L. (2012). Gildings and false gildings of the baroque age: characterization and conservation problems. Archaeometry, 54(5), 940-954. [DOI:10.1111/j.1475-4754.2011.00658.x]
29. Gunn, M., Chottard, G., Rivière, E., Girerd, J. J., & Chottard, J. C. (2002). Chemical reactions between copper pigments and oleoresinous media. Studies in conservation, 47(1), 12-23. [DOI:10.1179/sic.2002.47.1.12]
30. Hajiani, SH., & Abdullah Khan Gurji, M. (2008). Identification of colors used in three Qajar documents. restoration and research, second year, vol. 4 [in Persian].
31. Hermans, J. J., Keune, K., van Loon, A., & Iedema, P. D. (2015). An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. Journal of Analytical Atomic Spectrometry, 30(7), 1600-1608. [DOI:10.1039/C5JA00120J]
32. Hermans, J. J., Keune, K., van Loon, A., Stols-Witlox, M. J. N., Corkery, R. W., Iedema, P. D., & Iedema, P. (2014). The synthesis of new types of lead and zinc soaps: A source of information for the study of oil paint degradation. In ICOM committee for conservation 17th triennial conference preprints, Melbourne (pp. 15-19).
33. Horovitz, I. (1986). Paintings on copper supports: techniques, deterioration and conservation. The conservator, 10(1), 44-48. [DOI:10.1080/01410096.1986.9995017]
34. Karpenko, V. (2007). Not all that glitters is gold: gold imitations in history. Ambix, 54(2), 172-191. [DOI:10.1179/174582307X212323]
35. Klaassen, L., van der Snickt, G., Legrand, S., Higgitt, C., Spring, M., Vanmeert, F., ... & Janssens, K. (2019). Characterization and removal of a disfiguring oxalate crust on a large altarpiece by Hans Memling. Metal soaps in art: conservation and research, 263-282. [DOI:10.1007/978-3-319-90617-1_15]
36. Knotková-Čermákova, D., & Vlčková, J. (1971). Corrosive effect of plastics, rubber and wood on metals in confined spaces. British corrosion journal, 6(1), 17-22. [DOI:10.1179/000705971798324134]
37. Koochakzaei, A., Alizadeh Gharetapeh, S., & Jelodarian Bidgoli, B. (2022 a). Identification of pigments used in a Qajar manuscript from Iran by using atomic and molecular spectroscopy and technical photography methods. Heritage Science, 10(1), 30. [DOI:10.1186/s40494-022-00665-x]
38. Koochakzaei, A., Hamzavi, Y., & Shojae Far, F. (2022 b). Identification of red, blue and golden pigments in Qajar Mural Painting anaclitic fire place in Goharion House in Tabriz. Journal of Color Science and Technology, 15(4), 287-299 [in Persian].
39. Kosec, T., & Ropret, P. (2021). Efficiency of a corrosion inhibitor on bare, oxidized and real archeological bronze in indoor polluted atmosphere-digital image correlation approach. Journal of Cultural Heritage, 52, 65-72. [DOI:10.1016/j.culher.2021.09.007]
40. Kouril, M., Jindrova, E., Jamborova, T., Stoulil, J., & Dernovskova, J. (2016). Contribution of protein and polysaccharide binders to corrosion of gold‐imitating brass in illuminated manuscripts. Materials and Corrosion, 67(2), 130-140. [DOI:10.1002/maco.201408169]
41. Lee, O. K. (2002). Mechanistic studies of the oxidation of lignin and cellulose models. The University of Maine.
42. Leyssens, K. (2006). Monitoring the conservation treatment of corroded cupreous artefacts: The use of electrochemistry and synchrotron radiation based spectroelectrochemistry (Doctoral dissertation, Ghent University).
43. López-Delgado, A., Cano, E., Bastidas, J. M., & López, F. A. (2001). A comparative study on copper corrosion originated by formic and acetic acid vapours. Journal of materials science, 36, 5203-5211. [DOI:10.1023/A:1012497912875]
44. Mohammed, A. M. E. (2015). Estimation of the active components in gum Arabic collected from western Sudan. Int. J. Sci. Res, 80(9).
45. Prosek, T., Taube, M., Dubois, F., & Thierry, D. (2014). Application of automated electrical resistance sensors for measurement of corrosion rate of copper, bronze and iron in model indoor atmospheres containing short-chain volatile carboxylic acids. Corrosion Science, 87, 376-382. [DOI:10.1016/j.corsci.2014.06.047]
46. Qiu, P., & Leygraf, C. (2011). Multi-analysis of initial atmospheric corrosion of brass induced by carboxylic acids. Journal of the Electrochemical Society, 158(6), C172. [DOI:10.1149/1.3577600]
47. Rahimi, F., & Abdollahkhan Gorji, M. (2019). Gold in Decorative Motif of Qajar Quran: Identifying Golden Color in Five Quran Manuscripts in National Quran Museum. Knowledge of Conservation and Restoration, 2(1), 36-47 [in Persian].
48. Robinet, L., & Corbeil, M. C. (2003). The characterization of metal soaps. Studies in conservation, 48(1), 23-40. [DOI:10.1179/sic.2003.48.1.23]
49. Robinet, L., & Thickett, D. (2005). Case study: Application of Raman spectroscopy to corrosion products. Raman Spectroscopy in Archaeology and Art History, 325-334.
50. San Andrés, M., De la Roja, J. M., Baonza, V. G., & Sancho, N. (2010). Verdigris pigment: a mixture of compounds. Input from Raman spectroscopy. Journal of Raman Spectroscopy, 41(11), 1468-1476. [DOI:10.1002/jrs.2786]
51. Schrenk, J. (1994). The royal art of Benin: surfaces, past and present. Ancient & Historic METALS, 51.
52. Scott, D. A., Taniguchi, Y., & Koseto, E. (2001). The verisimilitude of verdigris: a review of the copper carboxylates. Studies in conservation, 46(sup1), 73-91. [DOI:10.1179/sic.2001.46.Supplement-1.73]
53. Scott, D. A. (2002). Copper and bronze in art: corrosion, colorants, conservation. Getty publications.
54. Tétreault, J., Cano, E., van Bommel, M., Scott, D., Dennis, M., Barthés-Labrousse, M. G., ... & Robbiola, L. (2003). Corrosion of copper and lead by formaldehyde, formic and acetic acid vapours. Studies in conservation, 48(4), 237-250. [DOI:10.1179/sic.2003.48.4.237]
55. Thickett, D., & Lee, L. R. (2004). Selection of materials for the storage or display of museum objects (pp. 1-30). London: British Museum.
56. Tilbrooke, D. (1980). The Fatty Acid Corrosion of Copper Alloys and Its Treament. ICCM bulletin, 6(3-4), 46-52. [DOI:10.1179/iccm.1980.6.3-4.009]
57. Trentelman, K., Stodulski, L., Scott, D., Back, M., Stock, S., Strahan, D., ... & Garrett, S. J. (2002). The characterization of a new pale blue corrosion product found on copper alloy artifacts. Studies in conservation, 47(4), 217-227. [DOI:10.1179/sic.2002.47.4.217]
58. Vasile, F. E., Martinez, M. J., Ruiz-Henestrosa, V. M. P., Judis, M. A., & Mazzobre, M. F. (2016). Physicochemical, interfacial and emulsifying properties of a non-conventional exudate gum (Prosopis alba) in comparison with gum arabic. Food hydrocolloids, 56, 245-253. [DOI:10.1016/j.foodhyd.2015.12.016]
59. Veiga, A., Teixeira, D. M., Candeias, A. J., Mirão, J., Rodrigues, P. S., & Teixeira, J. G. (2016). On the chemical signature and origin of dicoppertrihydroxyformate (Cu2 (OH) 3HCOO) formed on copper miniatures of 17th and 18th centuries. Microscopy and Microanalysis, 22(5), 1007-1017. [DOI:10.1017/S1431927616011636]
60. Vercruysse, K. P., Tyler, L. E., & Readus, J. (2017). Gum Arabic promotes oxidation and ester hydrolysis. bioRxiv, 199711. [DOI:10.1101/199711]
61. Zhou, L., Yang, X., Xu, J., Shi, M., Wang, F., Chen, C., & Xu, J. (2015). Depolymerization of cellulose to glucose by oxidation-hydrolysis. Green Chemistry, 17(3), 1519-1524. [DOI:10.1039/C4GC02151G]
62. Zuleta, E. C., Baena, L., Rios, L. A., & Calderón, J. A. (2012). The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: a review. Journal of the Brazilian Chemical Society, 23, 2159-2175. [DOI:10.1590/S0103-50532012001200004]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb