A Review of the Extraction and Characteristics of Copper-Arsenic Alloys in the Ancient World - Journal of Research on Archaeometry
------------------------------------------ ---------------------------------------
year 9, Issue 1 (2023)                   JRA 2023, 9(1): 167-196 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourzarghan V, Emami M, Bakhshandefard H. A Review of the Extraction and Characteristics of Copper-Arsenic Alloys in the Ancient World. JRA 2023; 9 (1) :167-196
URL: http://jra-tabriziau.ir/article-1-332-en.html
1- Department of Conservation & Restoration of Cultural & Historical Objects, Faculty of Conservation and Restoration, Art University of Isfahan, Isfahan, Iran , vahidpourzarghan@gmail.com
2- Department of Conservation & Restoration of Cultural & Historical Objects, Faculty of Conservation and Restoration, Art University of Isfahan, Isfahan, Iran
Abstract:   (1797 Views)

Undoubtedly, one of the most important alloying elements in the ancient world is arsenic, which played an important role in the handmade alloys of the early Bronze Age. Arsenic copper alloys and arsenic bronzes undoubtedly have a special place among archaeologists and researchers of ancient metallurgy as a man-made alloy. Arsenic as a contaminating element and impurity is scattered throughout the environment and the ancient metallurgist has used it in the production of arsenic copper alloy for ritual and practical purposes. Arsenic appears as a challenging element in the production of these works as well as the special characteristics that it creates on the surface of these works. One of the most important features of this element in casting is the creation of invers segregation on the surface of these works, which creates the phenomenon of arsenic sweat in these alloys. The primary minerals used in making these alloys are Cu2(AsO4)(OH) olivine or Cu3(AsO4)(OH), iron sulfur arsenide FeAsS and Cu3AsS4 enargite, which are obtained either by direct reduction or by co-smelting. have been placed, or that arsenic was consciously used through Speiss, in the production of arsenical copper alloy in the third millennium.
The extraction of arsenic metals is done by two methods: direct reduction and Co-Smelting. In the direct reduction smelting method, an alloy of copper and arsenic is created from the oxide ore. But due to the fact that most of the primary ores are sulfide ores, metallurgists have used the other way around, i.e. roasting and direct smelting, which regenerates the metal. In the roasting method, oxide ore is produced and sulfur is removed from the composition in the form of sulfur dioxide, and then copper metal is regenerated by direct smelting. From the extraction of these metals, several other products are created along Co-smelting, which include Matt, Speiss and Slag. The main goal of this article is to provide a comprehensive review of extraction methods, considering the importance of copper-arsenic alloys in the field of archeology and Archaeometallurgy, Providing a comprehensive review on extraction methods, physical characteristics of these alloys and the role of arsenic and its effect as an alloying element in the formation of silver surface as well as other side products as a very important issue in the investigation of early bronze age alloys.
Full-Text [PDF 2291 kb]   (382 Downloads)    
Technical Note: Review | Subject: Archaeometry
Received: 2022/08/15 | Accepted: 2023/09/2 | Published: 2023/10/11 | ePublished: 2023/10/11

1. Tylecote R.F. A History of Metallurgy, second ed, The Institute of Materials, London, Materials, London, 1992. 1-9.
2. Heskel, D. & Lamberg-Karlovsky, C. C. An alternative sequence for the development of metallurgy: Tepe Yahya, Iran. In (T. Wertime & J. Muhly, Eds) The Coming of the Age of Iron. New Haven: Yale University Press, (1980) pp. 229-266.
3. Lechtman H. Tradition and styles in central Andean metalworking. In: Maddin R (ed) The beginnings of the use of metals and alloys, Cambridge, MA, (1988). pp 344-378.
4. Budd, P. Haggerty, R. Pollard, A. Scaife, B. and Thomas, R. Rethink- ing the quest for provenance. Antiquity, (1996). 70:168-174. [DOI:10.1017/S0003598X00083034]
5. Budd, P. A metallographic investigation of Eneolithic arsenical copper. PhD thesis, University of Bradford, Dep. of Archaeological Science, Bradford. (1991).
6. Hosler, DThe Sounds and Colors of Power. London: The MIT Press, (1994). p. 310.
7. Rappjr G, Determining the origins of sulfide smelting, in: A. Hauptmann, Pernicka. E, Wagner. G.A. (Eds.), Old World Archaeometallurgy, Proceedings of the International Symposium "Old World Archaeometallurgy" Heidelberg, Dt. Bergbau-Museum, Bochum, 1987, pp. 107-110 (1989).
8. Rehren, Thilo. Boscher, Loïc. Pernicka, Ernst. Large scale smelting of speiss and arsenical copper at Early Bronze Age Arisman, Iran. Journal of Archaeological Science. (2012). 39. 1717-1727. [DOI:10.1016/j.jas.2012.01.009]
9. Thornton, C.P. Rehren, Th. Pigott, V.C. The production of speiss (iron arsenide) during the Early Bronze Age in Iran. Journal of Archaeological Science, (2009). 36. 308-316. [DOI:10.1016/j.jas.2008.09.017]
10. Rostoker, W., Pigott, V. C. & Dvorak, J. R. Direct reduction to copper metal by oxide-sulfide mineral interaction. Archaeomaterials (1989). 3, 69-87.
11. Meier, David Mathias Philip. Preliminary Archaeometallurgical Investigations of Bronze Age Metal Finds from Shahdad and Tepe Yahya Iranian journal of archaeological studies. (2011). 1: 2.
12. Pourzarghan, Vahid. Sarhadi-Dadian, Hossein. Hosseini, Samine. Identifying the Technology of a Bronze Dagger Discovered in Espidezh Region of Bazman in Sistan and Baluchestan, Iran. Journal of Anthropology and Archaeology. 2017. Vol. 5, No. 1, pp. 47-55[In Persian]. [وحید پور زرقان، حسین سرحدی دادیان، ثمینه حسینی. شناسایی فن خنجر برنزی مکشوفه از ناحیه اسپیدژ بزمان واقع در سیستان و بلوچستان. ایران. مجله انسان‌شناسی و باستان‌شناسی، 2017، 5 (1)، 47-55]
13. Pourzarghan, Vahid. Analysis of corrosion mechanism of arsenic-copperdiscovered of Spidej region of Bazman and Shahr-i-Sokhta areas in line with conservation of these objects. PhD Thesis, Art University of Isfahan. 2022. [In Persian]. [وحید پور زرقان، تحلیل سازوکار خوردگی مس-آرسنیکی به دست آمده از محوطه اسپیدژ بزمان و شهر سوخته در راستای پایداری این آثار، رساله دکتری، 2022، دانشگاه هنر اصفهان]
14. Pourzarghan, Vahid. Bakhshandefard, Hamidreza. Heydari, Mohammad. Microscopic amd Microstructural Study of Arsenic Copper from Spidej Bazamn. Journal of Research on Archaeometry. 2020 6 (2):75-89. DOI: 10.52547/jra.6.2.75. URL: http://jra-tabriziau.ir[In Persian]. [وحید پور زرقان، حمیدرضا بخشنده‌فرد، محمد حیدری، مطالعات میکروسکوپی و ریزساختاری مس آرسنیکی از محوطه اسپیدژ بزمان، پژوهه باستان‌سنجی، 2020، 6(2)، 75-89] [DOI:10.52547/jra.6.2.75]
15. Emami, Mohammadamin. Dardeniz, Gonca. Vallcorba, Oriol. Pourzarghan. Vahid. Tayyari, Javad. Towards a deeper understanding of the third millennium BC Iranian metallurgy: Use of synchrotron light for characterizing arsenic-bearing minerals in metal objects from Espidej. Surf Interface Anal. 2022. 1-15. John Wiley & Sons, Ltd [In Persian]. [محمد امامی، گونکا داردنیز، اریول والکوربا، وحید پور زرقان، جواد طیاری، درک عمیق از متالورژی هزاره سوم ق.م استفاده از نور سینکورتون برای ویژگی‌های مواد معدنی خاوی آرسنیک در اشیاء فلزی بدست آمده از اسپیدژ بزمان، تحلیل فصل مشترک سطح، 2022، جان وایلی، 1-15]
16. Sabouhi Sani. Farahangiz. Corrosion recognition and study technique and provides a soloution for the Bronze Age espidezh cemetery metal objects in South East Cultural Museum of Iran. M.A. Thesis. Art University of Isfahan. 2019. [In Persain]. [فرنگیس صبوحی ثانی، شناسایی خوردگی و تکنیک ساخت اشیاء فلزی بدست آمده از عصر برنز از گورستان اسپیدژ در موزه میراث جنوب شرق ایران، رساله کارشناسی ارشد، 2019، دانشگاه هنر اصفهان]
17. Hauptmann, A., Rehren, Th., & Schmitt-Strecker, S. Early BronzeAge copper metallurgy at Shahr-i Sokhta (Iran), reconsidered. In Th. Stöllner, G. Koerlin, G. Steffens & J. Cierny (Eds.), Man and Mining-Mensch und Bergbau. Studies in Honour of Gerd Weisgerber. (2003). pp. 197-213) (Der Anschnitt, Beiheft 16). Bochum: Deutsches Bergbau-Museum.
18. Potts DT. Mesopotamian civilization. The material foundations. Cornell University Press. (1997).
19. Muhly JD. Copper and tin: the distribution of mineral resources and the nature of the metals trade in the Bronze Age. The Connecticut Academy of Arts and Sciences, New Haven. (1973).
20. Emsley J. The elements, 2nd edn. Oxford University Press, Oxford. (1991).
21. O'Day, P.A. Chemistry and mineralogy of arsenic. Elements 2 (2), 77-83.Okereke, A., Stevens, S.E., 1991. Kinetics of Iron oxidation by Thiobacillus ferrooxidans.Appl. Environ. Microbiol, 2006 57 (4), 1052-1056. [DOI:10.1128/aem.57.4.1052-1056.1991]
22. Gallegos-Garcia, M., Ramírez-Muñiz, K., Song, S. Arsenic removal from water byadsorption using iron oxide minerals as adsorbents: a review. Miner. Process. Ext. Metall. Rev., 2012. 33 (5), 301-315. [DOI:10.1080/08827508.2011.584219]
23. Mandal, B.K., Suzuki, K.T. Arsenic round the world: a review. Talanta., 2002. 58 (1),201-235. [DOI:10.1016/S0039-9140(02)00268-0]
24. Yang, B., Zhang, G.L., Deng, W., Ma, J. Review of arsenic pollution and treatment progress in nonferrous metallurgy industry. Adv. Mater. Res. 2013. 634, 3239-3243. [DOI:10.4028/www.scientific.net/AMR.634-638.3239]
25. Panagiotaras, Dionisios. Papoulis, Dimitrios and Elias Stathatos. Geochemistry of Arsenic and Toxic Response. 2015. DOI: 10.1201/b18734-6. https://www.researchgate.net/publication/283005429.
26. Ritcey, G.M., Tailings management in gold plants. Hydrometallurgy. 2005. 78 (1), 3-20. [DOI:10.1016/j.hydromet.2005.01.001]
27. Riveros, P.A., Dutrizac, J.E., Spencer, P. Arsenic disposal practices in the metallurgical industry. Can. Metall. Q. 2001. 40 (4), 395-420. [DOI:10.1179/000844301794388263]
28. Bissen, M., Frimmel, F.H., Arsenic-a review. Part I: occurrence, toxicity, speciation,mobility. Acta Hydrochim. Hydrobiol. 2003a 31 (1), 9-18. [DOI:10.1002/aheh.200390025]
29. Vaughan, D.J. Arsenic. Elements., 2006 2, 71-75. [DOI:10.2113/gselements.2.2.71]
30. Hauptmann, Andreas. Archaeometallurgy -Materials Science Aspects. Springer. 2019. https://doi.org/10.1007/978-3-030-50367-3 [DOI:10.1007/978-3-030-50367-3.]
31. Ramdohr P, Strunz H. Klockmanns Lehrbuch der Mineralogie. Enke Verlag, Stuttgart. (1978).
32. Quiring H. Die Metallischen Rohstoffe, ihre Lagerungsverhältnisse und ihre wirtschaftliche Bedeutung 8: Arsen. Enke, Stuttgart. (1946).
33. Tretner A. Sorptions- und Redoxprozesse von Arsen an oxidischen Oberflächen. Experimentelle Untersuchungen. PhD-diss, Univers Heidelberg. (2002).
34. Nazari, Amir Mohammad. Radzinski, Rebecca. Ghahreman, Ahmad. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy. 2017. 174 258-281. [DOI:10.1016/j.hydromet.2016.10.011]
35. Tylecote, R.F. A History of Metallurgy Second edition. London. 1992.
36. Lechtman, Heather. Klein, Sabine. The Production of Copper-Arsenic Alloys (Arsenic Bronze) by Cosmelting: Modern Experiment, Ancient Practice. Journal of Archaeological Science (1999) 26, 497-526. [DOI:10.1006/jasc.1998.0324]
37. Charles, J. A. The coming of copper and copper-base alloys and iron: a metallurgical sequence. In (T. A. Wertime & J. D. Muhly, Eds) The Coming of the Age of Iron. New Haven, CT: Yale University Press. (1980) pp. 151-181.
38. Tylecote, R. F. Summary of results of experimental work on early copper smelting. In (W. A. Oddy, Ed.) Aspects of Early Metallurgy. London: British Museum. (1980b), pp. 5-12.
39. Zwicker, U., Greiner, H., Hofmann, K.-H. & Reithinger, M. Smelting, refining, and alloying of copper and copper alloys in crucible furnaces during prehistoric up to Roman times. In (P. T. Craddock & M. J. Hughes, Eds) Furnaces and Smelting Technology in Antiquity. London: British Museum. (1985) pp. 103-115.
40. Rapp Jr., G. Determining the origins of sulfide smelting. In (A. Hauptmann, E. Pernicka & G. A. Wagner, Eds) Old World Archaeometallurgy. Bochum: Selbstverlag des Deutschen Bergbau-Museums, (1989) pp. 107-110.
41. Rostoker, W., Pigott, V. C. & Dvorak, J. R. Direct reduction to copper metal by oxide-sulfide mineral interaction. Archaeomaterials. (1989). 3, 69-87.
42. Keesmann I, Bachmann H, Hauptmann A. Klassifikation eisenreicher Schlacken nach dem Phasenbestand. Fortschritte der Mineralogie. 1984. 62:114-116.
43. Tafel V. Lehrbuch der Metallhüttenkunde 2 (Wismut, Blei, Zinn, Antimon, Zink, Quecksilber, Nickel, Aluminium). Hirzel, Leipzig. (1929).
44. Keesmann, I., Rio Tinto: Die Technik der Silbergewinnung zu Beginn des Mittelalters, in: Conference papers, Archeologie, Sou's theme ''Argent, plomb et cuivre dans l'histoire''. CNRS, Villeurbanne, 1991. pp. 1-13.
45. Ettler V, Johan Z, Selmi Wallisova M, Mihaljevič M, Šebek O. Slag remains from the Na Slupi site (Prague, Czech Republic): evidence for early medieval non-ferrous metal smelting. J Archaeol Sci. (2015) 53:72-83. [DOI:10.1016/j.jas.2014.10.007]
46. Hauptmann A.5000 Jahre Kupfer in Oman 1: die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit Der Anschnitt Beih 4. (1985).
47. Westner K, Klein S, Gassmann G. Roman to medieval precious and base metal smelting near Ulpiana (Kosovo): evidence for complex multistage extraction of silver. In: Körlin G, Prange M, Stöllner T, Yalçn Ü (eds) From bright ores to shiny metals, Festschrift a Hauptmann. Der Anschnitt Beih, (2016). Vol 29, pp 205-218.
48. Sundman, B., Jansson, B. & Anderson, J.-O. The ThermoCalc data base system. Calphad 9, (1985). 153-190 [DOI:10.1016/0364-5916(85)90021-5]
49. Tafel, V. Lehrbuch der Metallhu¨ttenkunde. Bd. 1 Leipzig: S. Hirzel Verlagsbuchhandlung.
50. Tiedemann, H. Die Haarkupferbildung im Kupferstein. Metall und Erz. (1926). 23, 200-210
51. Kassianidou, V., 1998. Was silver actually recovered from speiss in antiquity? In: Rehren, Th., Hauptmann, A., Muhly, J.D. (Eds.), Metallurgica Antiqua. Der Anschnitt, Beiheft 8. Deutsches Bergbau-Museum, Bochum, (1951). pp. 69-76.
52. [Craddock PT. Dto., 3. The origins and early use of Brass. J Archaeol Sci 3:93-113.
53. Müller R, Rehren T, Rovira S (2004) Almizaraque and the early copper metallurgy of southeastern Spain: new data. Madrider Mitt. (1978). 45:33-56.
54. Keesmann I, Moreno Onorato A. Naturwissenschaftliche Untersuchungen zur frühen Technologie von Kupfer und Kupfer-Arsen-bronze. In: Hauptmann A, Pernika E, Rehren T, Yalç {n Ü (eds) The beginnings of metallurgy, Der Anschnitt Beih, (1999). vol 9, pp 317-332.
55. Lechtman H. Arsenic bronze: dirty copper or chosen alloy? A view from the Americas. J Field Archaeol. (1996) 23(4):477-514. [DOI:10.1179/009346996791973774]
56. Zwicker, U., Natural copper-arsenic alloy and smelted arsenic bronzes in early metal production. In: Mohen, J.-P., Eluere, C. (Eds.), Decouverte du Metal. Picard,Paris, 1991. pp. 331-340.
57. Smith, C.S., An examination of the arsenic-rich coating on a bronze bull from Horoztepe. In: Young, W.J. (Ed.), Application of Science in the Examination of Works of Art. Boston Museum of Fine Arts, Boston, 1973. pp. 96-102.
58. Bachmann, H.-G., The Identification of Slags from Archaeological Sites. Institute of Archaeology, London. Occasional Publication. 1982. No. 6.
59. Keesmann, I. Eisen in antiken Schlacken des su¨ dwestiberischen SulphiderzGu¨ rtels. Pallas. 1999 50, 339-360. [DOI:10.3406/palla.1999.1561]
60. Rehren, Th., Schneider, J., Bartels, Ch., Medieval lead-silver smelting in theSiegerland, West Germany. Historical Metallurgy. 1999. 33, 73-84.
61. Doonan, R., Day, P., Dimpoulou-Rethemiotaki, N., Lame excuses for emerging complexity in Early Bronze Age Crete: the metallurgical finds from Poros Katsambas and their context. In: Day, P., Doonan, R. (Eds.), Metallurgy in the Early Bronze Age Aegean. Oxbow Books, Oxford, 2007. pp. 98-122.
62. Hauptmann, A., Rehren, Th., Schmitt-Strecker, S., Early Bronze Age copper metallurgy at Shahr-i Sokhta (Iran), reconsidered. In: Sto¨llner, T., Koerlin, G., Steffens, G., Cierny, J. (Eds.), Man and Mining/Mensch und Bergbau. Studies in Honour of Gerd Weisgerber: Der Anschnitt, Beiheft 16. Deutsches BergbauMuseum, Bochum, 2003. pp. 197-213.
63. Khalil, L., Bachmann, H.-G., Evidence of copper smelting in Bronze Age Jericho. Historical Metallurgy. 1981. 15, 103-106.
64. Muhly, J.D., Maddin, R., Stech, T., O¨ zgen, E., Iron in Anatolia and the nature of the Hittite iron industry. Anatolian Studies. 1985. 35, 67-84. [DOI:10.2307/3642872]
65. Frisch, B., Mansfeld, G., Thiele, W.-R., Kamid el-Loz 6. Die Werksta¨tten der spa¨tbronzezeitlichen Pala¨ste. Dr. Rudolf Habelt GMBH, Bonn. 1985.
66. Kilian, K., 1983. Ausgrabungen in Tiryns. Bericht zu den Grabungen. Archa¨ologischer Anzeiger 3, 1981 294-328.
67. Waldbaum, J.C., The coming of iron in the eastern Mediterranean: Thirty years of archaeological and technological research. In: Pigott, V.C. (Ed.), The Archaeometallurgy of the Asian Old World. University Museum Monograph 89. The University Museum, University of Pennsylvania, Philadelphia, 1999. pp. 27-57.
68. Broodbank, C., Rehren, Th., Zianni, A., Scientific analysis of metal objects and metallurgical remains from Kastri, Kythera. Annuals of the British School in Athens. 2007. 102, 221-240. [DOI:10.1017/S006824540002147X]
69. Mu¨ ller, R., Rehren, Th., Rovira, S., Almizaraque and the early copper metallurgy of southeast Spain: New data. Madrider Mitteilungen. 2004. 45, 33-56.
70. Paulin, A., Orel, N.T. Metallurgical examinations in the archaeometallurgical projects of the National Museum of Slovenia. Materiali in Tehnologije, 2003. 37 (5), 251-259. Paulin, A., Spaic, S., Spruk, S., Heath, D.J., Trampuz-Orel, N., Speiss from Late Bronze Age. Erzmetall. 1999. 52 (11), 615-622.
71. Paulin, A., Spaic, S., Heath, D.J., Trampuz-Orel, N., Analysis of Late Bronze Age Speiss. Bulletin of the Metals Museum. 2000. 32, 29-41.
72. Tylecote, R.F., The Early History of Metallurgy in Europe. Longman, New York. 1987.
73. Craddock, P.T., Freestone, I.C., Hunt Ortiz, M., Recovery of silver from speiss at Rio Tinto (SW Spain). IAMS Newsletter. 1987. 10/11, 8-11.
74. Goldenberg, G., Archa¨ometallurgische Untersuchungen zur Entwicklung des Metallhu¨ ttenwesens im Schwarzwald. Blei, Silber- und Kupfergewinnung von der Fru¨ hgeschichte bis zum 19. Jahrhundert. In: Goldenberg, G., Otto, J., Steuer, H. (Eds.), Archa¨ometallurgische Untersuchungen zum Metall-hu¨ ttenwesen im Schwarzwald. Thorbecke Verlag, Sigmaringen, 1996. pp. 9-275.
75. Rehren, Th., Schneider, J., Bartels, Ch., Medieval lead-silver smelting in the Siegerland, West Germany. Historical Metallurgy. 1999.33, 73-84.
76. Boscher, L. A Reconstruction of Early Bronze Age Arsenical Copper Production at Arisman on the Iranian Plateau. Unpublished MSc thesis, UCL Institute of Archaeology, London. 2010.
77. Tadmor, M., Kedem, D., Begemann, F., Hauptmann, A., Pernicka, E., SchmittStrecker, S., The Nahal Mishmar hoard from the Judean Desert: technology, composition, and provenance. Atiqot. 1995. 27, 95-148.
78. Palmieri, A.M., Frangipane, M., Hauptmann, A., Hess, K., Early metallurgy at Arslantepe during the Late Chalcolithic and the Early Bronze Age IA-IB periods. In: Hauptmann, A., Pernicka, E., Rehren, Th., Yalcin, U¨. (Eds.), The Beginnings of Metallurgy. Der Anschnitt, Beiheft 9. Deutsches Bergbau-Museum, Bochum, 1999. pp. 141-149.
79. Meliksetian, K., Pernicka, E., Badaylan, R., Avetissyan, P., Geochemical characterization of Armenian Early Bronze Age metal artefacts and their relation to copper ores. In: Archaeometallurgy in Europe. Associazione Italiana di Metallurgia, Milano, 2003. pp. 597-606.
80. Bachmann, H.G, "The identification of slags fron archaeological sites", Institute of Archaeology London. Occasional Publication, (1982). No.6
81. Emami, Mohammadamin. The importance of mineralogical studies on old smelting slags in the paragenesis of metallic minerals, Iran Mining Engineering Conference, 2003. [امامی، سید محمد‌امین، اهمیت مطالعات مینرالوژیک بر روی سرباره‌های ذوب قدیمی در پاراژنز کانی‌های فلزی. کنفرانس مهندسی معدن ایران 1383.]
82. Chakraborti, N., Lynch, D.C. Thermodynamics of roasting arsenopyrite. Metallurgical Tansactions B., 1983. 14B, 239-251. [DOI:10.1007/BF02661020]
83. Radivojević, Miljana. Rehren, Thilo. Paint It Black: The Rise of Metallurgy in the Balkans. J Archaeol Method Theory. 2015. DOI 10.1007/s10816-014-9238-3. [DOI:10.1007/s10816-014-9238-3]
84. Radivojević, Miljana. Archaeometallurgy of the Vinča culture: a case study of the site of Belovode in eastern Serbia. Historical Metallurgy. 2013. 47(1). 13-32.
85. Raghavan, V., Phase Diagrams of Ternary Iron Alloys Part 2: Ternary Systems Containing Iron and Sulphur. Indian Institute of Metals, Calcutta. 1988.
86. Willis, G.M., Toguri, J.M., Yazawa's diagram. The AusIMM Metallurgical Society. 2009.Special Paper., 1-8.
87. Emami, Mohammadamin. Kowald, Torsten. Trettin, Reinhard. Preliminary archaeometallurgical studies on copper extraction from polymetallic ore sources in Meymand, south central Iranian desert. Archaeol Anthropol. 2015. Sci DOI 10.1007/s12520-016-0319-y [In Persian]. [محمد امین امامی، تورستن کوالد، رین هارد تریتن، مطالعه مقدماتی فلزگری در استخراج مس از منابع کان سنگ چند فلزی در میمند، ناحیه جنوب مرکزی ایران، باستان‌شناسی علوم انسانی] [DOI:10.1007/s12520-016-0319-y]
88. Craddock, P.T. Early Metal Mining and Production. Smithsonian Institution, Washington D.C, 1995.
89. Dies, K. Kupfer und kupferlegierungen in der technik. Springer, Berlin, Heidelberg, New York. 1967 [DOI:10.1007/978-3-642-48931-0]
90. Subramanian, P. R. and Laughlin, D. E. As-Cu (Arsenic-Copper). In Subramanian, P. R., editor, Phase diagrams of binary copper alloys, Monograph Series on Alloy Phase Diagrams, (1994a) pages 43-52. The Materials Information Soci- ety, Materials Park. Ohio.
91. Hanson, D. and Marryat, C. Investigation of the effects of impurities on copper. Part III - The effect of arsenic on copper. Journal of the Institute of Metals, (1927). 37:121-148.
92. Northover, J.P. Properties and use of arsenic-copper alloys. In Old World Archaeometallurgy, Proceedings of the International Symposium, Heidelburg 1987 (eds A. Hauptman, E. Pernicka, and G.A. Wagner) Selbstverlag des Deuschen Bergbau-Museums, Bochum, (1989). pp. 111-118.
93. Budd, P. Eneolithic arsenical copper: heat treatment and the metallo- graphic interpretation of manufacturing processes. In Proceedings of the Inter- national Symposium on Archaeomatry, Heidelberg 1990, pages 35-44, Basel. Birkhäuser Verlag.
94. Naud, J. & Priest, P. Contributions to the study of the copper-arsenic system. Mater Res Bull, (1972). 783-792 (in French). [DOI:10.1016/0025-5408(72)90128-6]
95. Bengough, G.D. & Hill, B.P. The properties and constitution of copper-arsenic alloys. J Inst Met. (1910). 3, 34-71.
96. Skinner, B.J. & Luce, F.D. Stabilities and compositions of α-domeykite and algodonite. Econ Geol. (1971). 66, 133-139. [DOI:10.2113/gsecongeo.66.1.133]
97. Heyding, R.D. & Despault, G.J.G. The copper/arsenic system and the copper arsenide minerals. Can J Chem. (1960). 38(12), 2477-2481. [DOI:10.1139/v60-335]
98. Pereira, Filipa. Silva, Rui J. C. Monge Soares, António M. Araújo, Maria F. Oliveira, Maria J. Martins, Rui M. S. and Schell, Norberth. Effects of Long-Term Aging in Arsenical Copper Alloys Microsc. Microanal. 2015. 21, 1413-1419. doi:10.1017/S1431927615015263. [DOI:10.1017/S1431927615015263]
99. Giumlia-Mair, Alessandra. Investigation of a Copper-based Hoard from the Megalithic Site of al-Midamman, Yemen: An Interdisciplinary Approach. Journal of Archaeological Science.2002 29,195-209. doi:10.1006/jasc.2001.0686, available online at http://www.idealibrary.com on. [DOI:10.1006/jasc.2001.0686]
100. Scott, D. A, Copper and Bronze in Art: Corrosion, Colorants and Conservation, Los Angeles, Getty Conservation Institute Publications, (2002).
101. Giumlia-Mair, A., and M. Lehr. Patinating black bronzes: Texts and tests. In Proceedings of the Fourth International Conference on the Beginning of the Use on Metals and Alloys, 1998 103-8. Tokyo: Japan Institute of Metals.
102. ASM Handbook Volume 17. Nondestructive Evaluation and Quality Control. ASM Intentional, 1992.
103. Boeira, A., Ferreira, I.L., Garcia, A., Alloy composition and metal/mold heat transfer efficiency affecting inverse segregation and porosity of as-cast AleCu alloys. Mater. 2009. Des. 30, 2090e2098. http://dx.doi.org/10.1016/j.matdes.2008.08. [DOI:10.1016/j.matdes.2008.08.032]
104. Mödlinger M. and Sabatini B. A Re-evaluation of inverse segregation in prehistoric As-Cu objects. Journal of Archaeological Science, 2016 74, pp 60-74. [DOI:10.1016/j.jas.2016.08.005]
105. Mödlinger, Marianne. Cziegler, Andreas. Schnideritsch, Holger. Sabatini, Benjamin. Archaeological Arsenical Bronzes and Equilibrium in the As-Cu System. Metallurgical and Materials Transactions. 2017. DOI: 10.1007/s11663-018-1322-8 https://www.researchgate.net/publication/326312521.
106. Mödlinger1, Marianne. Calderon, Raquel de Oro. Haubner, Roland. Arsenic loss during metallurgical processing of arsenical bronze. Archaeological and Anthropological Sciences. 2018. DOI: 10.1007/s12520-017-0534-1 https://www.researchgate.net/publication/319199072. [DOI:10.1007/s12520-017-0534-1]
107. Budd, P. and Ottaway, B. The properties of arsenical copper alloys: im- plications for the development of Eneolithic metallurgy. In Budd, P., Chapman, (1991).
108. Meeks, N. Patination phenomena on Roman and Chinese high-tin bronze mirrors and other artefacts. In Metal Plating and Patination, ed. S. LaNiece and P. Craddock, 1993a 63-84. Oxford: Butterworth-Heinemann. Meeks, N. Surface characterization of tinned bronze, high-tin bronze, tinned iron and arsenical bronze. In Metal Plating and Patination, ed. S. LaNiece and P. Craddock, 1993b. pp 247- 75. Oxford: Butterworth-Heinemann. [DOI:10.1016/B978-0-7506-1611-9.50010-8]
109. La Niece, S., and Carradice, I. White copper: The arsenical coinage of the Libyan revolt 241-238 BC. Journal of the Historical Metallurgy Society, (1989). 23(1), 9-16.
110. Briard, J., and Mohen, J-P. Le tumulus de la forêt de Cannoit a Quimperle (Finistère). Antiquities Nationales, (1974), 6, 46-60.
111. Hook, D.R., Freestone, I.C., Meeks, N.D., Craddock, P.T., and Moreno Onorato, A The early production of Copper Alloys in SouthEast Spain. In Archaeometry 90 (eds E. Pernika, and G.A. Wagner) Proceedings of the Archaeometry Conference, Heidelberg 1990, Birkhäuser Verlag, Basel, (1991). pp. 65-76.
112. McKerrell, H. and Tylecote, R. F. The working of copper-arsenic al loys in the Early Bronze Age and the effect of the determination of provenance. Proceedings of the Prehistoric Society, (1972) (38):209-218. [DOI:10.1017/S0079497X00012111]
113. Meeks ND. Surface characterization of tin bronze, tinned iron and arsenical bronze. In: La Niece S, Craddock P (eds) Metal plating and Patination. Cultural, technical and historical developments. Butterworth Heinemann, (1993). pp 247-275. [DOI:10.1016/B978-0-7506-1611-9.50025-X]
114. Ryndina, N., The potential of metallography in investigations of early objects made of copper and copper-based alloys. Hist. Metall. 2009. 43/1, 1-18.
115. Yadolahi Hafshejani, Atefe. Technology and Cause of deterioration investigation of some bronze ornamentation were found in Kurgan's excavations of jafarabad and interpretation a conservation and restoration plan. M.A. Thesis. Art University of Isfahan.2015. [عاطفه ید الهی هفشه جانی، فن‌شناسی و بررسی دلیل تخریب و بعضی از تزینات برنزی یافته شده از جعفرآباد گرگان و تحلیل نقشه حفاظت و مرمت، رساله کارشناسی ارشد، دانشگاه هنر اصفهان، 2015]
116. Ravich, I.G., Ryndina, N.V., Early copper-arsenic alloys and the problems of their use in the Bronze Age of the North Caucasus. Bull. Metals Mus. 1995. 23, 1-18.
117. Budd, P., Gale, D., Pollard, A.M., Thomas, R.G., Williams, P.A., The early development of metallurgy in the British Isles. Antiquity. 1992. 66, 677-686. [DOI:10.1017/S0003598X00039375]
118. Budd, P.D. Determination of the Manufacturing Processes of Early Prehistoric Arsenical Copper Artefacts by Microstructural Analysis Based on a Reevaluation of the Mechanical Prop. 1991b
119. Rovira, S., Gomez, R.P., Las primeras etapas metalúrgicas en la peninsula Iberica. Estudios metalogra ficos (Madrid). 2003.
120. Smith CS. An examination of the arsenic-rich coating on a Bronze Age bull from Horoztepe. In: Young WJ (ed) Applicat Sc Examin arts, (1973). pp 96-102.
121. Northover P. Properties and use of arsenic-copper alloys. In: Hauptmann A, Pernicka E, Wagner GA (eds) Old World Archaeometallurgy. Proc Internat. (1989).
122. Pereira, F., Silva, R.J.C., Monge Soares, A.M., Araújo, M.F., The role of arsenic in Chalcolithic copper artefacts e insights from Vila Nova de Sao Pedro (Portugal). ~ J. Archaeol. Sci. 2013. 40, 2045-2056. http://dx.doi.org/10.1016/j.jas.2012.12.015 [DOI:10.1016/j.jas.2012.12.015]
123. Ravich, I.G., Ryndina, N.V. Early copper-arsenic alloys and the problems of their use in the Bronze Age of the North Caucasus. Bull. Metals Mus, 1995 23, 1e18.
124. Lechtman, H. Arsenic bronze: Dirty copper or chosen alloy? A view from the Americas. Journal of Field Archaeology, (1996). 23(4):477-514. [DOI:10.1179/009346996791973774]
125. Northover, P. Exotic alloys in antiquity. In Rehren, T., Hauptmann, A., and Muhly, J. D., editors, Metallurgia Antiqua, Der Anschnitt: (1998). Beiheft 8, pages 113-121. Deutsches Bergbaumuseum Bochum, Bochum.
126. Böhne, C Zur Frage der Härtung von Kupferwaffen und Geräten. Technische Beiträge zur Archäologie, (1965). 2:126-130.
127. Budd P, Ottaway BS. The properties of arsenical copper alloys: implications for the development of eneolithic metallurgy. In: Budd P, Chapman B, Jackson C, Janaway R, Ottaway BS (eds). (1991).
128. Bosk M. Material properties of copper alloys containing arsenic, antimony, and bismuth. The material of Early Bronze A. (2003).
129. Budd, P. Enolithic arsenical copper: heat treatment and metallographic interpretation of manufacutering processes. In proceeding of the international symposium on archaeometry, Heidelberg 1990, 35-44-Basel. Birkhӓuser verlag.
130. Hanson, D. Marryat, C. Investigation of the effects of impurities on copper. Part III- the effect of arsenic on the copper. journal of institute of metals. 1927. 37, 121-148.
131. Scott. D. A. Metallography and microstructure of ancient and historic metals. Gettyconservation inst. J. Paul Getty Museum. Malibu. Calif. 1991.
132. Scott, David A. Schwab, Roland. Metallography in Archaeology and Art. Springer Nature Switzerland. 2019. https://doi.org/10.1007/978-3-030-11265-3 [DOI:10.1007/978-3-030-11265-3.]
133. Scott. D.A. Ancient Metals: Microstructure and Metallurgy Vol I. Principles and Practice. Conservation cience Press. 2010.
134. Selimchanov, I. R Arsenical copper in H.H. Coghlan's works and inves- tigations in the laboratory of the Institute of History at the Academie of Sciences at Azerbijan SSR. Historical Metallurgy, (1982). 16(2):50-57.
135. Charles, J. A. Early arsenical bronzes - a metallurgical view. American Journal of Archaeology, (1967). (1):21-26. [DOI:10.2307/501586]
136. Askeland, D. R. The science and engineering of materials. PWS Pub- lishing Company, Boston. (1994).
137. Pernicka, E. Gewinnung und Verbretung der metalle in pӓrhistorischer Zeit. Jahrbuch des Römish-Germanchen Nationalmuseum Mainz. 1990. 21-129.
138. Witter, W. Neues zu den Barrenring-Hortfunden im Vorlande der Ost-alpen. Prähistorische Zeitschrift, (1953). 34/35:179-190.
139. Spiridonov, A. A. Kupfer in der Geschichte der Menschheit. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig. (1986).
140. Ottaway, B. Prähistorische Archäometallurgie. Verlag Marie L. Leidorf, Espelkamp. (1994).
141. Pollard, A. M., Thomas, R. G., and Willianm, P. Some experiments concerning smelting of arsenical copper. In Budd, P., Chapman, B., Jackson, C., Janaway, R., and Ottaway, B., editors, Archaeological Sciences 1989, Oxford. Oxbow Books.
142. Zwicker, U. Natural copper-arsenic alloysand smeltedarsenic bronzes in early metal production. In Mohen, J.-P., editor, Découverte du métal, volume 2 of Millénaires, (1991). Pages 331-340. Picard, Paris.
143. Thornton C. The chalcolithic and early Bronze Age metallurgy of Tepe Hissar, Northeast Iran: a challenge to the "Levantine paradigm". PhD-diss Univers of Philadelphia. (2009b).
144. Thornton C. The emergence of complex metallurgy on the Iranian plateau: escaping the Levantine paradigm. J World Prehist. (2009a). 22:301-327. [DOI:10.1007/s10963-009-9019-1]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb