بررسی دنباله‌های ریاضی در آرایه‌های هندسی گره‌های کند ده - پژوهه باستان سنجی
سال 7، شماره 1 - ( 1400 )                   سال 7 شماره 1 صفحات 265-253 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heydari Delgarm M, Barqzadegan M. (2021). Investigating Numerical Sequences in Decagonal Geometric Ornamentation. JRA. 7(1), 253-265. doi:10.52547/jra.7.1.253
URL: http://jra-tabriziau.ir/article-1-261-fa.html
حیدری دلگرم مجید، برق‌زدگان مهدی. بررسی دنباله‌های ریاضی در آرایه‌های هندسی گره‌های کند ده پژوهه باستان سنجی 1400; 7 (1) :265-253 10.52547/jra.7.1.253

URL: http://jra-tabriziau.ir/article-1-261-fa.html


1- گروه معماری، دانشگاه بوعلی سینا، همدان، ایران ، heydaridelgarm@basu.ac.ir
2- دانشگاه آزاد اسلامی واحد همدان، همدان، ایران
چکیده:   (2124 مشاهده)
گره در کنار کتیبه و نقوش اسلیمی سه دسته اصلی تزئینات در معماری اسلامی بوده است. این آرایه‌ها در دو دسته اصلی منابع مورد توجه بوده‌اند. دستۀ اول، منابع آموزشی تألیف استادکاران معماری سنتی و شاگردان ایشان بوده است و دستۀ دوم متون تحقیقاتی دانشگاهی. ویژگی‌های ریاضی آرایه‌های «گره» در هر دو دستۀ این منابع مورد توجه بوده است، و پیشتر برخی از این ویژگی‌ها کشف و معرفی شده است. هدف مقالۀ حاضر، معرفی ویژگی‌ای در خرد کردن گره‌های ده ایرانی است که پیش از این در ادبیات علمی ناشناخته بوده است و برای نخستین بار در این مقاله معرفی می‌شود. این تحقیق به روش ‌تحلیلی پیش رفته است و اطلاعات از منابع کتابخانه‌ای گردآوری شده‌اند. هر گره شامل تعدادی چندضلعی است که با قرارگیری در کنار یکدیگر، سطحی بزرگتر (زمینه) را می‌پوشانند. خرد کردن گره به معنی تبدیل گره به گرهی دیگر در همان زمینه و با اجزای کوچکتر است. این عمل به روش‌های مختلفی انجام می‌شود و استادان معماری سنتی برخی از آنها را معرفی کرده‌اند. در این مقاله یکی از روش‌هایی که استاد حسین لرزاده معرفی کرده‌اند مبنا قرار داده شده است. نتایج مقاله نشان می‌دهد در خرد کردن متوالی گره‌های کند ده، اجزای چندضلعی گره‌ها با نسبت معکوس عدد فی کوچک می‌شوند و با ثابت نگه داشتن اندازۀ چندضلعی‌های تشکیل‌دهنده، اندازۀ زمینه مطابق تعمیم دنبالۀ فیبوناتچی و در رابطه‌ای با نسبت طلایی رشد می‌کند. زمینه‌های متوالی حاصل از خرد کردن متوالی را می‌توان در چیدمانی مارپیچ مرتب کرد. در این صورت رابطۀ تعمیم فیبوناتچی میان اضلاع زمینه‌ها نمودار خواهد بود. نمونه‌هایی واقعی از اجزای گره‌های بناها و نمونه‌هایی ترسیمی در چنین چیدمانی در مقاله آورده شده‌اند. اثبات ویژگی‌های یافته شده در این تحقیق به کار تحلیل هندسی و طراحی گره‌ها خواهد آمد، و نتایج آن را می‌توان پایه‌ای برای مسئلۀ طراحی گره‌های جدید برای زمینه‌های مختلف قرار داد.
 
متن کامل [PDF 2318 kb]   (2199 دریافت)    
یاداداشت علمی: پژوهشي | موضوع مقاله: باستان سنجی
دریافت: 1400/2/9 | پذیرش: 1400/5/30 | انتشار: 1400/6/30 | انتشار الکترونیک: 1400/6/30

فهرست منابع
1. Lurzādah Ḥusayn. Reviving Forgotten Arts, Vol 1. Tehran: Author, 1358. [in Persian] [لرزاده حسین. احیای هنرهای از یاد رفته، مجلد اول. تهران: مؤلف، ۱۳۵۸.]
2. Shaʿrbāf Aṣghar. Geometric Arabesque and Ribbed Vaults. Tehran: Iranian Cultural Heritage Organization, 1361. [in Persian] [شعرباف اصغر. گره و کاربندی. تهران: سازمان میراث فرهنگی، ۱۳۶۱.]
3. Zumarshīdī Ḥusayn. Girih Tilings in Architecture and Handicrafts. Tehran: Center for University Publishing, 1365. [in Persian] [زمرشیدی حسین. گ‍ره‌ چ‍ی‍ن‍ی‌ در م‍ع‍م‍اری‌ اس‍لام‍ی‌ و ه‍ن‍ره‍ای‌ دس‍ت‍ی‌. تهران: مرکز نشر دانشگاهی، ۱۳۶۵.]
4. Māhīr al-Naqsh Mahmūd. Design and Execution of Tiling in Iran: Islamic Period. Tehran: Reza Abbasi Museum, 1361. [in Persian] [ماهرالنقش محمود. طرح‌ و اج‍رای‌ ن‍ق‍ش‌ در ک‍اش‍ی‍ک‍اری‌ ای‍ران‌: دورۀ‌ اس‍لام‍ی‌. تهران: موزه رضا عباسی، ۱۳۶۱.]
5. Bourgoin Jules. Les Arts Arabes. Paris: A. Morel, 1867.
6. Bourgoin Jules. Les Éléments de l'Art Arabe. Paris: Librairie de Firmin-Didot et cie, 1879. p.24, 82.
7. Jones Owen. The Grammar of Ornament by Owen Jones: Illustrated by Examples from Various Styles of Ornament. Day and Son, 1865. p.74,
8. Necipoğlu Gülru. The Topkapi Scroll: Geometry and Ornament in Islamic Architecture. California: Getty Center for the History of Art and the Humanities, 1995. p. 61,62.
9. Hay David R. Original Geometrical Diaper Designs. London: D. Bogue 1849.
10. Christie Archibald H. Traditional Methods of Pattern Designing; an Introduction to the Study of the Decorative Art. Oxford: Clarendon press.1910.
11. Lee Anthony J. Islamic Star Patterns. Muqarnas 1987; 4: 182-197. [DOI:10.2307/1523103]
12. Kaplan Craig S. Islamic Star Patterns from Polygons in Contact. In: Proceedings of Graphics Interface 2005. Canadian Human-Computer Communications Society, p. 177-185.
13. Navāyī Kāmbīz, Kāmbīz Ḥājīqasemī. Khesht-o Khiāl: An Interpretation of Iranian Islamic Architecture. Tehran: Shahid Beheshti University, Soroush, 1390. p.196. [in Persian] [نوایی کامبیز، کامبیز حاجی‌قاسمی. خشت و خیال: شرح معماری اسلامی ایران. تهران: دانشگاه شهید بهشتی؛ سروش، ۱۳۹۰. ص. ۱۹۶.]
14. Sarhangi Reza. Interlocking Star Polygons in Persian Architecture: The Special Case of the Decagram in mosaic Designs. Nexus Network Journal 2012; 1-28. DOI. 10.1007/s00004-012-0117-5. [DOI:10.1007/978-3-0348-0507-0_10]
15. Bodner BL. From Sultaniyeh to Tashkent Scrolls: Euclidean Constructions of Two Nine-and Twelve-pointed Interlocking star Polygon Designs. Nexus Network Journal 2012; 14: 307-332. [DOI:10.1007/s00004-012-0111-y]
16. Bonner Jay F. The Historical Significance of the Geometric Designs in the Northeast Dome Chamber of the Friday Mosque at Isfahan. Nexus Network Journal 2016; 18: 55-103. [DOI:10.1007/s00004-015-0275-3]
17. Rigby John. Creating Penrose-Type Islamic Interlacing Patterns. Proc Bridges: Mathematical Connections in Art, Music and Science,(London, 2006), eds R Sarhangi and J Sharp 2006; 41-48.
18. Islām Panāh Muḥammad Ḥusayn. Poetic Explanation of Self-Similar Geometric Arabesque. Kerman: Author, 1396 [in Persian] [اسلام‌پناه محمدحسین. شرح منظومه گره در گره. کرمان: محمدحسین اسلام‌پناه، ۱۳۹۶.]
19. Islām Panāh Muḥammad Ḥusayn. Notes on Drafting Geometric Arabesque. Culture of Iranian Land, Vol 30. 1384; 355-360. [in Persian] [اسلام‌پناه ‌محمد‌حسین. تکمله ای بر رسم گره. فرهنگ ایران زمین جلد سی‌ام 1384؛ 355-360.]
20. Shafizade Asadolah, Saiede Soltan Mohammadlo. Presentation of the Step by Step Model of Knot Drawing Method Based on the Principle of Grinding (Generative). Negareh 1399; 54: 77-94. DOI. 10.22070/negareh.2020.1239 [Original Text in Persian with English Abstract] [شفیع‌زاده ‌اسدالله، ‌سعیده سلطان‌محمدلو. ارائۀ مدل گام‌به‌گام روش ترسیم گره بر مبنای قاعدۀ خرد کردن (زایندگی). نگره 1399؛ 54: 77-94.]
21. Raʾīszādah Mahnāz, Ḥusayn Mufīd. Reviving Forgotten Arts: Fundamentals of Traditional Architecture in Iran According to Ustad Ḥusayn Lurzādah. Tehran: Mola (Mawlá), 1374. p.141-148. [in Persian] [رییس‌زاده مهناز، حسین مفید. احیای هنرهای از یادرفته: مبانی معماری سنتی در ایران به روایت استاد حسین لرزاده. تهران: مولی، ۱۳۷۴. ص.۱۴۱-۱۴۸.]
22. Lu Peter J, Peter J Steinhardt. Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture. Science 2007; 315: 1106-1110. DOI. 10.1126/science.1135491 p.1107. [DOI:10.1126/science.1135491]
23. Cromwell Peter R. The Search for Quasi-Periodicity in Islamic 5-Fold Ornament. The Mathematical Intelligencer 2009; 31 (1): 36-56. DOI. 10.1007/s00283-008-9018-6. [DOI:10.1007/s00283-008-9018-6]
24. Broug Eric. Islamic Geometric Design. London: Thames & Hudson, 2013.
25. Saltzman Peter. Quasi-Periodicity in Islamic Geometric Design. In: Williams K, Ostwald MJ (eds) Architecture and Mathematics from Antiquity to the Future: Volume I: Antiquity to the 1500s. New York: Birkhäuser, p. 585-602. DOI: 10.1007/978-3-319-00137-1_39. [DOI:10.1007/978-3-319-00137-1_39]
26. Ostwald MJ, Williams K (eds). Architecture and Mathematics from Antiquity to the Future: Volume I: Antiquity to the 1500s. 1st ed. 2015. New York: Birkhäuser, 2015. [DOI:10.1007/978-3-319-00143-2_43]
27. Levine Dov, Steinhardt Paul J. Quasicrystals. I. Definition and structure. Physical Review B 1986; 34: 596-616. p .609. DOI 10.1103/PhysRevB.34.596. [DOI:10.1103/PhysRevB.34.596]
28. Fārābī Muḥammad ibn Muḥammad. Encyclopedia of the Sciences. Beirut: Dār va Maktabat al-Hilāl. 1996. p.51 [in Arabic] [فارابی محمد بن محمد. احصاء العلوم. بیروت: دار و مکتبه الهلال. ۱۹۹۶. ص.۵۱.]
29. Allard André. The Influence of Arabic Mathematics in the Medieval West. Roshdi Rashed (éd), Encyclopedia of the History of Arabic Science 1996; 3: 539-80.
30. Stakhov Alexey P. The Golden Section in the Measurement Theory. Computers & Mathematics with Applications 1989; 17 (4-6): 613-638. DOI. 10.1016/0898-1221(89)90252-6 p.616. [DOI:10.1016/0898-1221(89)90252-6]
31. Valibeig Nima, Nooshin Nazarieh, Sanaz Rahravi. Comparing Study of Mother Girih in the Drawing Methods Domain, with Offering an Unwrtiten Method. Journal for the History of Science 1396; 15: 251-274. DOI. 10.22059/jihs.2019.237807.371406 [Original Text in Persian with English Abstract] [ولی بیگ نیما، نوشین نظریه، ساناز رهروی. مطالعۀ مقایسه‌ای گره مادر در گسترۀ شیوه‌های ترسیم با ارائه و معرفی شیوه‌ای نامکتوب. تاریخ علم ۱۳۹۶؛ 15: 251-274]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهه باستان سنجی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb