1. Binford, L. R. (1962). Archaeology as anthropology. American antiquity, 217-225. [
DOI:10.2307/278380]
2. Binford, L. R. (1965). Archaeological systematics and the study of culture process. American antiquity, 203-210. [
DOI:10.2307/2693985]
3. Binford, L. R., & Sabloff, J. A. (1982). Paradigms, systematics, and archaeology. Journal of Anthropological Research, 137-153. [
DOI:10.1086/jar.38.2.3629594]
4. Bishop, R. L., Rands, R. L., & Holley, G. R. (1982). Ceramic compositional analysis in archaeological perspective. Advances in archaeological method and theory, 275-330. [
DOI:10.1016/B978-0-12-003105-4.50012-1]
5. Daar, E., Al Mugren, K. S., Chika, S., Barnes, S., & Bradley, D. A. (2015). XRF measurements of Zn, Sr and Pb in archaeological bone. X-Ray Spectrometry, 44(3), 129-134. [
DOI:10.1002/xrs.2589]
6. Duminuco, P., Messiga, B., & Riccardi, M. (1998). Firing process of natural clays. Some microtextures and related phase compositions. Thermochimica Acta, 321(1), 185-190. [
DOI:10.1016/S0040-6031(98)00458-4]
7. Emami, M. (2012). QXRD, XRF and optical microscopy applied to characterization and provenance of ancient ceramics from Haft Teppeh (1500–1150 BC), southwest Iran. In IOP Conference Series: Materials Science and Engineering (Vol. 37, No. 1, p. 012012). IOP Publishing. [
DOI:10.1088/1757-899X/37/1/012012]
8. Emami, M. (2014). \"Toroud\", the late motion for As-Sb bearing Cu production from 2nd millennium BC in Iran: An archaeometallurgical approach. Mediterranean Archaeology and Archaeometry, 14(2), 169-188.
9. Emami, M., & Trettin, R. (2012). Mineralogical and chemical investigations on the ceramic technology in Čoġā Zanbil,(Iran, 1250 BC). Periodico di Mineralogia Vol. 81, 3 dicembre 2012, 359.
10. Emami, M., & Trettin, R. (2013). High Tech in 5100 BC: multianalytical approach for characterisation of decorated pottery from Tappeh-Zaghe. Surface Engineering, 29(2), 134-139. [
DOI:10.1179/1743294412Y.0000000063]
11. Emami, S. M. (2010). Preliminary studies on mining methods used in Sivand quarries during the Achaemenian period in Fars province, Irán. Geología Colombiana, 35, 175.
12. Emami, S. M. A., Volkmar, J., & Trettin, R. (2008). Quantitative characterisation of damage mechanisms in ancient ceramics by quantitative X-ray powder diffraction, polarisation microscopy, confocal laser scanning microscopy and non-contact mode atomic force microscopy. Surface Engineering, 24(2), 129-137. [
DOI:10.1179/174329408X298157]
13. Fernández, J. E., Scot, V., & Sabbatucci, L. (2015). A modeling tool for detector resolution and incomplete charge collection. X-Ray Spectrometry, 44(3), 177-182. [
DOI:10.1002/xrs.2597]
14. Freestone, I. (1982). Applications and Potential of Electron probe Micro-Analysis in Technological and rovenance investigations of ancient caramics. Archaeometry, 24(2), 99-116 . [
DOI:10.1111/j.1475-4754.1982.tb00993.x]
15. Garrigós, B. I., Ontiveros, C., & Kilikoglou, V. (2003). Chemical Variability in Clays and Pottery from a Traditional Cooking Pot Production Village: Testing Assumptions in Pereruela*. Archaeometry, 45(1), 1-17. [
DOI:10.1111/1475-4754.00093]
16. Giumlia-Mair, A. (2001, September). Iron Age tin in the Oriental Alps. In Le problème de l\'étain à l\'origine de la métallurgie/The Problem of Early Tin (Giumlia-Mair A. and Lo Schiavo F. ed.), Acts of the XIVth UISPP Congress, University of Liège, Belgium (pp. 2-8).
17. Gondet, S., Dhemaied, A., Mohammadkhani, K., & Rejiba, F. (2009). Geophysical investigations in the vicinity of the Persepolis Royal Terrace (Fars province, Iran). ArcheoSciences. Revue d\'archéométrie(33 (suppl.)), 69-72. [
DOI:10.4000/archeosciences.1307]
18. Hauptmann, A. (1985). 5000 Jahre Kupfer in Oman: Die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit (Vol. 4). Dt. Bergbaumuseum.
19. Hell, S. W., Dyba, M., & Jakobs, S. (2004). Concepts for nanoscale resolution in fluorescence microscopy. Current opinion in neurobiology, 14(5), 599-609. [
DOI:10.1016/j.conb.2004.08.015]
20. Henderson, J. (2013). The science and archaeology of materials: an investigation of inorganic materials. Routledge.
21. Keesmann, I., Bachmann, H., & Hauptmann, A. (1984, January). Classification of Iron-rich Slags According to the Phase-composition. In Fortschritte der Mineralogie (vol. 62, pp. 114-116). Naegele U Obermiller Johannesstrasse 3a, d 70176 Stuttgart, Germany: e Schweizerbart\'sche Verlags.
22. Keesmann, I., Bachmann, H., & Hauptmann, A. (1984b). Classification of iron-rich slags according to the phase-composition. Paper presented at the Fortschritt der Mineralogie.
23. Killick, D., & Fenn, T. (2012). Archaeometallurgy: The Study of Preindustrial Mining and Metallurgy. Annual Review of Anthropology, 41(1), 559-575. [
DOI:10.1146/annurev-anthro-092611-145719]
24. Koleini, F., De Beer, F., Schoeman, M. H. A., Pikirayi, I., Chirikur, S., Nothnagel, G., & Radebe, J. M. (2012). Efficiency of neutron tomography in visualizing the internal structure of metal artefacts from Mapungubwe museum collection with the aim of conservation. Journal of Cultural Heritage, 13(3), 246-253. [
DOI:10.1016/j.culher.2011.11.001]
25. Koleini, F., Prinsloo, L. C., Schoeman, M. H. A., Pikirayi, I., & Chirikure, S. (2013). Characterization of the corrosion layer on iron archaeological artefacts from K2 (825–1220 AD), an archaeological site in South Africa. Studies in Conservation, 58(3), 274-282. [
DOI:10.1179/2047058412Y.0000000044]
26. Košler, J., Fonneland, H., Sylvester, P., Tubrett, M., & Pedersen, R.-B. (2002). U–Pb dating of detrital zircons for sediment provenance studies a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology, 182(2), 605-618. [
DOI:10.1016/S0009-2541(01)00341-2]
27. Lichtensteiger, T. (2002). Die petrologische Evaluation Im Einklang mit der Erde (pp. 193-208): Springer. [
DOI:10.1007/978-3-642-59387-1_8]
28. Mannino, M., Thomas, K., Leng, M., Piperno, M., Tusa, S., & Tagliacozzo, A. (2007). Marine Resources in the Mesolithic and Neolithic at the Grotta Dell\'uzzo (Sicily): Evidence From Isotope Analyses Of Marine Shells*. Archaeometry, 49(1), 117-133. [
DOI:10.1111/j.1475-4754.2007.00291.x]
29. Mendoza Cuevas, A., Bernardini, F., Gianoncelli, A., & Tuniz, C. (2015). Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrometry, 44(3), 105-115. [
DOI:10.1002/xrs.2585]
30. Ranjbar, H., Masoumi, F., & Carranza, E. (2011). Evaluation of geophysics and spaceborne multispectral data for alteration mapping in the Sar Cheshmeh mining area, Iran. International Journal of Remote Sensing, 32(12), 3309-3327. [
DOI:10.1080/01431161003745665]
31. Reinhard, K. J. (1992). Parasitology as an interpretive tool in archaeology. American antiquity, 231-245. [
DOI:10.2307/280729]
32. Riederer, J. (2004). Thin section microscopy applied to the study of archaeological ceramics. Hyperfine interactions, 154(1-4), 143-158. [
DOI:10.1023/B:HYPE.0000032029.24557.b1]
33. Willmott, H., Miller, I., & Jackson, C. (2012). Glass Recipes and the Output from a 19th-Century Glass Works: Examples from Percival, Vickers & Co. Ltd, Manchester. Industrial Archaeology Review, 34(1), 51-64. [
DOI:10.1179/0309072812Z.0000000003]
34. Zacharias, N., Schwedt, A., i Garrigós, J. B., Michael, C. T., Mommsen, H., & Kilikoglou, V. (2007). A contribution to the study of post-depositional alterations of pottery using TL dating analysis. Journal of Archaeological Science, 34(11), 1804-1809. [
DOI:10.1016/j.jas.2006.12.017]