Dating of Pottery Fragments Recovered from the Archaeological Sites of Kul Tepe Gargar and Dava Göz Khoy Using the Archaeomagnetic Method - Journal of Research on Archaeometry

قابل توجه نویسندگان محترم، مقالاتی که از تاریخ 1404/07/13 برای نشریه ارسال می شوند،  شامل پرداخت هزینه بررسی نخواهند شد.

------------------------------------------ ---------------------------------------
year 10, Issue 2 (2024)                   JRA 2024, 10(2): 1-29 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dadashzadeh N, B. Kasiri M, Rashid H, Hamedpour Darabi M, Abedi A, Aslani A. (2024). Dating of Pottery Fragments Recovered from the Archaeological Sites of Kul Tepe Gargar and Dava Göz Khoy Using the Archaeomagnetic Method. JRA. 10(2), 1-29. doi:10.61882/jra.10.2.370
URL: http://jra-tabriziau.ir/article-1-370-en.html
1- Faculty of Cultural Materials Conservation, Tabriz Islamic Art University, Tabriz, Iran , Nasrindadashzadeh80@gmail.com
2- Faculty of Cultural Materials Conservation, Tabriz Islamic Art University, Tabriz, Iran
3- Geology and Mineral Exploration Organization of Iran, Tehran, Iran
4- Physics Department, University of Hormozgan, Hormozgan, Iran
Abstract:   (2003 Views)
Paleomagnetism is an interdisciplinary field that bridges geophysics and archaeology, focusing on the study of variations in the Earth’s magnetic field throughout human history. This method utilizes periodic changes in the geomagnetic field and the properties of certain archaeological materials that can record the direction and intensity of the Earth’s magnetic field, enabling the relative dating of artifacts. The samples analyzed in this research were selected from pottery artifacts excavated at the archaeological sites of Kul Tepe Jolfa and Dava Göz Khoy. These samples span various chronological periods, ranging from the Neolithic to the Kura-Araxes II period (5215–2638 BCE), with their absolute ages previously determined using the radiocarbon (14C) dating method. The objective of this study was to develop a reference curve illustrating periodic variations in the inclination of the ancient magnetic field and to establish a relative dating tool for estimating the age of unidentified samples from the same temporal range. To achieve this, laboratory techniques were employed, including: 1) Measurement of mass-specific magnetic susceptibility using the Kappabridge instrument. 2) Detection of superparamagnetic minerals via frequency-dependent magnetic susceptibility measurements using the Bartington apparatus. 3) Magnetic mineralogy analysis conducted with a Multi-Function Kappabridge. Thermal demagnetization was used to eliminate secondary magnetization and isolate the primary magnetic signature. The analyzed samples exhibited comparable magnetic behavior, attributed to the prevalence of ferromagnetic minerals. The ferromagnetic mineral grains comprised a mixture of superparamagnetic and larger particles. Magnetite and titano-magnetite were identified as the primary magnetic carriers in all samples, while hematite was notably absent. The irreversibility observed in the magnetic temperature curves suggests insufficient heating and phase transformation of minerals during thermal processing, posing challenges to the accurate determination of archaeomagnetic properties. Nonetheless, there is a strong concordance between the obtained results and the reference curve of archaeomagnetic inclination variations for the investigated time span. This alignment is further supported by data from neighboring sites within the same temporal and spatial context. Despite certain limitations and uncertainties, the reference curve remains a viable tool for age determination of thermally altered samples and artifacts within the specified chronological framework and a spatial radius of approximately 1000 km around the examined two sites. 
Full-Text [PDF 3517 kb]   (503 Downloads)    
Technical Note: Original Research | Subject: Archaeometry
Received: 2023/05/25 | Accepted: 2025/04/12

References
1. Abedi A. (2016). Absolute (14C AMS) and Relative Chronology of Dava Göz Khoy; New Evidence of Transitional Chalcolithic, Dalma and Pisdeli Cultures in NW IRAN. JRA. 2(1), 39-54.(In Persian). [DOI:10.29252/jra.2.1.39]
2. Abedi, A. (2016). New Evidence from Neolithic to Achaemenid Periods in North-Western Iran: Excavations at Kul Tepe (Hadishahr), Second Preliminary Report (2013). Iranian Journal of Archaeological Studies, 6(1), 59-82. [DOI:10.22059/jarcs.2016.59497]
3. Abedi, A. (2016). Preliminary Reports of the Second Season of Excavation at Kul Tepe Hadishahr, North West Iran. Journal of Archaeological Studies, 8(1), 91-111..(In Persian) doi: 10.22059/jarcs.2016.59497 [DOI:10.22059/jarcs.2016.59497]
4. Abedi, A. (2017). Iranian-Azerbaijan Pathway from the Zagros to the Caucasus: Kul Tepe and Dava Göz, New Neolithic Sites in NW Iran. Mediterranean Archaeology and Archaeometry, 17, 79-98. [DOI:10.5281/zenodo.258086]
5. Abedi, A., & Omrani, B. (2015). Kura-Araxes culture and north-western Iran: new perspectives from Kul Tepe Jolfa (Hadishahr). Paléorient, 55-68.http://www.jstor.org/stable/44244535 [DOI:10.3406/paleo.2015.5655]
6. Abedi, A., Mohammadi, V. D., Steiniger, D., & Glascock, M. D. (2018). The provenance of Kul Tepe obsidian artifacts: Syunik and the highlands of Armenia as possible seasonal pastureland. Journal of Archaeological Science: Reports, 21, 406-412. [DOI:10.1016/j.jasrep.2018.08.027]
7. Abedi, A., Omrani, B., & Karimifar, A. (2015). Fifth and fourth millennium BC in north-western Iran: Dalma and Pisdeli revisited. Documenta Praehistorica, 42, 321-338. [DOI:10.4312/dp.42.23]
8. Abedi, A., Shahidi, H. K., Chataigner, C., Niknami, K., Eskandari, N., Kazempour, M., ... & Ebrahimi, G. (2014). Excavations at Kul Tepe (Hadishahr), north-western Iran, 2010: first preliminary report. Ancient Near Eastern Studies, 51, 33-165. [DOI:10.22084/nb.2022.25429.2436]
9. Afshari, A., Moravej, K., & Alamdari, P. (2018). Vertical distribution of magnetic parameters and total equivalent iron concentration and their relationships with soil parent material lithology. Water and Soil Science, 28(1), 231-241.‏.(In Persian).‏https://water-soil.tabrizu.ac.ir/article_7607.html
10. Akimoto, S. I. (1951). Magnetic susceptibility of ferromagnetic minerals contained in igneous rocks. Journal of geomagnetism and geoelectricity, 3(3-4), 47-58. [DOI:10.5636/jgg.3.47]
11. Batt, C. M., Brown, M. C., Clelland, S. J., Korte, M., Linford, P., & Outram, Z. (2017). Advances in archaeomagnetic dating in Britain: New data, new approaches and a new calibration curve. Journal of Archaeological Science, 85, 66-82.‏ [DOI:10.1016/j.jas.2017.07.002]
12. Butler, R. F. (1998). Paleomagnetism: magnetic domains to geologic terrains.https://spada.uns.ac.id/pluginfile.php/81172/mod_resource/content/1/PALEOMAGNETISM%20Magnetics%20Domains%20to%20Geological%20Terranes.pdf
13. Carrancho, A., Gogichaishvili, A., Kapper, L., Morales, J., Soler Arechalde, A. M., & Tema, E. (2015). Geomagnetic applications in archeology: state of the art and recent advances. New Developments in Paleomagnetism Research, 53-98.https://igum.geofisica.unam.mx/san/articulo.pdf
14. Catanzariti, G., Gómez-Paccard, M., McIntosh, G., Pavón-Carrasco, F. J., Chauvin, A., & Osete, M. L. (2012). New archaeomagnetic data recovered from the study of Roman and Visigothic remains from central Spain (3rd-7th centuries). Geophysical Journal International, 188(3), 979-993. [DOI:10.1111/j.1365-246X.2011.05315.x]
15. Dearing, J. A., Bird, P. M., Dann, R. J. L., & Benjamin, S. F. (1997). Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophysical Journal International, 130(3), 727-736. [DOI:10.1111/j.1365-246X.1997.tb01867.x]
16. Gallet, Y., & Butterlin, P. (2015). Archaeological and Geomagnetic Implications of New Archaeomagnetic Intensity Data from the Early Bronze High Terrace 'Massif Rouge'at Mari (Tell Hariri, Syria). Archaeometry, 57, 263-276. [DOI:10.1111/arcm.12112]
17. Gallet, Y., Genevey, A., Le Goff, M., Warmé, N., Gran-Aymerich, J., & Lefèvre, A. (2009). On the use of archeology in geomagnetism, and vice-versa: recent developments in archeomagnetism. Comptes Rendus Physique, 10(7), 630-648. [DOI:10.1016/j.crhy.2009.08.005]
18. Gómez-Paccard, M., & Beamud, E. (2008). Recent achievements in archaeomagnetic dating in the Iberian Peninsula: application to Roman and Mediaeval Spanish structures. Journal of Archaeological Science, 35(5), 1389-1398. [DOI:10.1016/j.jas.2007.10.005]
19. Gomez-Paccard, M., Catanzariti, G., Ruiz-Martinez, V. C., McIntosh, G., Núñez, J. I., Osete, M. L & Thiriot, J. (2006). A catalogue of Spanish archaeomagnetic data. Geophysical Journal International. [DOI:10.1111/j.1365-246X.2006.03020.x]
20. Hammond, M. (2014). The use of Archaeomagnetism to answer Archaeological and Geomagnetic questions with particular focus on determination of the strength of the Geomagnetic field in the Middle east during the Bronze age (Doctoral dissertation, University of Liverpool).https://core.ac.uk/download/pdf/80773069.pdf
21. Hunt, C. P., Moskowitz, B. M., & Banerjee, S. K. (1995). Magnetic properties of rocks and minerals. Rock physics and phase relations: A handbook of physical constants, 3, 189-204.https://wellog.com/RF003p0189.pdf [DOI:10.1029/RF003p0189]
22. Hus, J., Geeraerts, R., & Spassov, S. (2003). Archaeomagnetism and archaeomagnetic dating. Institut Royal Météorologique de Belgique, Belgique.
23. Jordanova, N., Jordanova, D., Barrón, V., Lesigyarski, D., & Kostadinova-Avramova, M. (2019). Rock-magnetic and color characteristics of archaeological samples from burnt clay from destructions and ceramics in relation to their firing temperature. Archaeological and Anthropological Sciences, 11, 3595-3612. [DOI:10.1007/s12520-019-00782-y]
24. Kostadinova, M., & Kovacheva, M. (2008). Case study of the Bulgarian Neolithic archaeological site of Piperkov Chiflik and its archaeomagnetic dating. Physics and Chemistry of the Earth, Parts A/B/C, 33(6-7), 511-522. [DOI:10.1016/j.pce.2008.02.016]
25. Manoharan, C., Sutharsan, P., Venkatachalapathy, R., Vasanthi, S., Dhanapandian, S., & Veeramuthu, K. (2015). Spectroscopic and rock magnetic studies on some ancient Indian pottery samples. Egyptian Journal of Basic and Applied Sciences, 2(1), 39-49. [DOI:10.1016/j.ejbas.2014.11.001]
26. Mullins, C. E., & Tite, M. S. (1973). Magnetic viscosity, quadrature susceptibility, and frequency dependence of susceptibility in single‐domain assemblies of magnetite and maghemite. Journal of Geophysical research, 78(5), 804-809. [DOI:10.1029/JB078i005p00804]
27. Renfrew, C., & Bahn, P. G. (2007). Archaeology essentials: Theories, methods, and practice. Thames & Hudson.
28. Tarling, D. H. (1966). The magnetic intensity and susceptibility distribution in some Cenozoic and Jurassic basalts. Geophysical Journal International, 11(4), 423-432. [DOI:10.1111/j.1365-246X.1966.tb03093.x]
29. Tema, E., & Kondopoulou, D. (2011). Secular variation of the Earth's magnetic field in the Balkan region during the last eight millennia based on archaeomagnetic data. Geophysical Journal International, 186(2), 603-614. [DOI:10.1111/j.1365-246X.2011.05088.x]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb