A Review of Biodeterioration in Iranian Historical Monuments with Emphasis on Porous Architectural Materials - Journal of Research on Archaeometry
------------------------------------------ ---------------------------------------
year 7, Issue 2 (2021)                   JRA 2021, 7(2): 159-182 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zabihi M, Sohrabi M, Talebian M H, Nortaghani A. A Review of Biodeterioration in Iranian Historical Monuments with Emphasis on Porous Architectural Materials. JRA 2021; 7 (2) :159-182
URL: http://jra-tabriziau.ir/article-1-290-en.html
1- Iranian Research Organization for Scientific and Technology, The Museum of Iranian Lichens, Tehran, Iran
2- Iranian Research Organization for Scientific and Technology, The Museum of Iranian Lichens, Tehran, Iran , sohrabi@irost.org
3- Department of Architecture, Faculty of Architecture, University of Tehran, Tehran, Iran
4- Department of Architecture, Faculty of Engineering, Golestan University, Gorgan, Iran
Abstract:   (1614 Views)
Iran is known as one of the top 10 countries in this field with its various historical-artistic works made of stone and brick. It is the historical monuments that determine the antiquity, history, and civilization of each land. Physical, chemical, and biological factors in co-operation, from coexistence to antagonism, cause biodeterioration. The biodeterioration of historical monuments and art in countries with ancient history and having historical buildings has been considered by many scientists. Any adverse change in the properties of materials that occurs through the vital activities of living organisms is called biodeterioration. Living organisms that can cause biodeterioration are known as biodeteriogens. These factors cause biodeterioration by forming biofilms on surfaces. Substances that are altered and degraded by the activities of organisms are divided into two categories: organic and inorganic. The development of specific biological species in specific structural materials is determined by the nature and properties of the materials (mineral composition, pH, relative percentage of different minerals, salinity, moisture, and texture). It also depends on specific environmental factors (e.g. temperature, relative humidity - RH, light conditions, oxygen, nitrogen, level of atmospheric pollution, wind, and rainfall). In this article, the biodeterioration factors of historical-artistic works made of porous materials in Iran have been studied to evaluate the factors affecting the activity of organisms and their reproduction on historical-artistic works and to understand the mechanisms related to biodeterioration and design appropriate solutions for use protection and repair.
Full-Text [PDF 1859 kb]   (1649 Downloads)    
Technical Note: Review | Subject: Conservation Science
Received: 2021/09/21 | Accepted: 2021/12/21 | Published: 2021/12/25 | ePublished: 2021/12/25

1. Griffin PS, Indictor N, Koestler RJ. The Biodeterioration of Stone: a Review of Deterioration Mechanisms, Conservation Case Histories, and Treatment. vol. 28. 1991. [DOI:10.1016/0265-3036(91)90042-P]
2. Koestler RJ, Kumar R, Kumar A V. Biodeterioration of Stone in Tropical Environments: An Overview. J Am Inst Conserv 2002;41:98. [DOI:10.2307/3179902.]
3. Saiz-Jimenez C. Biodeterioration of Stone in Historic Buildings and Monuments. Mycotoxins, Wood Decay, Plant Stress. Biocorrosion, Gen. Biodeterior., Springer US; 1994, p. 587-604. [DOI:10.1007/978-1-4757-9450-2_45.]
4. Pochon J, Jaton C. The role of microbiological agencies in the deterioration of stone. Chem Ind 1967:1587-9.
5. Gadd GM. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010;156:609-43. [DOI:10.1099/mic.0.037143-0.]
6. Gaylarde CC, Morton LHG, Loh K, Shirakawa MA. Biodeterioration of external architectural paint films - A review. Int Biodeterior Biodegrad 2011;65:1189-98. [DOI:10.1016/j.ibiod.2011.09.005.]
7. Jain KK, Mishra AK, Singh T. Biodeterioration of stone: A review of mechanisms involved. Recent Adv Biodeterior 1993;1:323-54.
8. Arora PK, Chand T, Pankaj D•, Arora K. Evaluation of potential of molecular and physical techniques in studying biodeterioration. Springer 2012;11:71-104. [DOI:10.1007/s11157-012-9264-0.]
9. Pasquarella C, Balocco C, Pasquariello G, Petrone G, Saccani E, Manotti P, et al. A multidisciplinary approach to the study of cultural heritage environments: Experience at the Palatina Library in Parma. Sci Total Environ 2015;536:557-67. [DOI:10.1016/j.scitotenv.2015.07.105.]
10. Griffin PS, Indictor N, Koestler RJ. The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment. vol. 28. 1991. [DOI:10.1016/0265-3036(91)90042-P.]
11. Mazzoli R, Giuffrida MG, Pessione E. Back to the past: "find the guilty bug-microorganisms involved in the biodeterioration of archeological and historical artifacts." Appl Microbiol Biotechnol 2018;102:6393-407. [DOI:10.1007/s00253-018-9113-3.]
12. Scheerer S, Ortega-Morales O, Gaylarde C. Chapter 5 Microbial Deterioration of Stone Monuments-An Updated Overview. Adv Appl Microbiol 2009;66:97-139. [DOI:10.1016/S0065-2164(08)00805-8.]
13. Flemming HC. Biodeterioration of synthetic materials - A brief review. Mater Corros 2010;61:986-92. [DOI:10.1002/maco.201005837.]
14. Florian M-L. Plant Biology for Cultural Heritage: Biodeterioration and Conservation. vol. 54. 2009. [DOI:10.1179/sic.2009.54.3.191.]
15. Balloi A, Palla F. Biocleaning. Biotechnol. Conserv. Cult. Herit., Springer International Publishing; 2017, p. 67-84. [DOI:10.1007/978-3-319-46168-7_4.]
16. Beimforde C. Biodeterioration (of Stone). Encycl Earth Sci Ser 2011:112-7. [DOI:10.1007/978-1-4020-9212-1_24.]
17. Sterflinger K, Piñar G. Microbial deterioration of cultural heritage and works of art - Tilting at windmills? Appl Microbiol Biotechnol 2013;97:9637-46. [DOI:10.1007/s00253-013-5283-1.]
18. Gonzalez JM, Sainz-Jimenez C. Microbial diversity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J Sep Sci 2004;27:174-80. [DOI:10.1002/jssc.200301609.]
19. Trovão J, Portugal A, Soares F, Paiva DS, Mesquita N, Coelho C, et al. Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. Int Biodeterior Biodegrad 2019;142:91-102. [DOI:10.1016/j.ibiod.2019.05.008.]
20. Savković Ž, Unković N, Stupar M, Franković M, Jovanović M, Erić S, et al. Diversity and biodeteriorative potential of fungal dwellers on ancient stone stela. Int Biodeterior Biodegrad 2016;115:212-23. [DOI:10.1016/j.ibiod.2016.08.027.]
21. Guerra FL, Lopes W, Cazarolli JC, Lobato M, Masuero AB, Dal Molin DCC, et al. Biodeterioration of mortar coating in historical buildings: Microclimatic characterization, material, and fungal community. Build Environ 2019;155:195-209. [DOI:10.1016/j.buildenv.2019.03.017.]
22. Florian M-L. Plant Biology for Cultural Heritage: Biodeterioration and Conservation. vol. 54. 2009. [DOI:10.1179/sic.2009.54.3.191.]
23. Di Carlo E, Barresi G, Palla F. Biodeterioration. Biotechnol. Conserv. Cult. Herit., Springer International Publishing; 2017, p. 1-30. [DOI:10.1007/978-3-319-46168-7_1.]
24. Kovacik L. Cyanobacteria and algae as agents of biodeterioration of stone substrata of historical buildings and other cultural monuments. Proc New Millenium Int Forum Conserv Cult Prop Daejeon, Korea 2000:44-58.
25. Gambino M, Sanmartín P, Longoni M, Villa F, Mitchell R, Cappitelli F. Surface colour: An overlooked aspect in the study of cyanobacterial biofilm formation. Sci Total Environ 2019;659:342-53. [DOI:10.1016/j.scitotenv.2018.12.358.]
26. Zhang G, Gong C, Gu J, Katayama Y, Someya T, Gu JD. Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. Int Biodeterior Biodegrad 2019;143. [DOI:10.1016/j.ibiod.2019.104723.]
27. Wakefield RD, Jones MS. An introduction to stone colonizing micro-organisms and biodeterioration of building stone. Q J Eng Geol 1998;31:301-13. [DOI:10.1144/GSL.QJEG.1998.031.P4.03.]
28. Tonon C, Favero-Longo SE, Matteucci E, Piervittori R, Croveri P, Appolonia L, et al. Microenvironmental features drive the distribution of lichens in the House of the Ancient Hunt, Pompeii, Italy. vol. 136. 2019. [DOI:10.1016/j.ibiod.2018.10.012.]
29. Pena-Poza J, Ascaso C, Sanz M, Pérez-Ortega S, Oujja M, Wierzchos J, et al. Effect of biological colonization on ceramic roofing tiles by lichens and a combined laser and biocide procedure for its removal. vol. 126. 2018. [DOI:10.1016/j.ibiod.2017.10.003.]
30. Ding Y, Salvador CSC, Caldeira AT, Angelini E, Schiavon N. Biodegradation and Microbial Contamination of Limestone Surfaces: An Experimental Study from Batalha Monastery, Portugal. Corros Mater Degrad 2021;2:31-45. [DOI:10.3390/cmd2010002.]
31. Seaward MRD, Giacobini C, Giuliani MR, Roccardi A. The role of lichens in the biodeterioration of ancient monuments with particular reference to Central Italy. Int Biodeterior Biodegrad 2001;48:202-8. [DOI:10.1016/S0964-8305(01)00082-8.]
32. Lisci M, Monte M, Pacini E. Lichens and higher plants on stone: A review. vol. 51. 2003. [DOI:10.1016/S0964-8305(02)00071-9.]
33. Konsa K, Tirrul I, Hermann A. Wooden objects in museums: Managing biodeterioration situation. Int Biodeterior Biodegrad 2014;86:165-70. [DOI:10.1016/j.ibiod.2013.06.023.]
34. Sánchez-Piñero F, Bolívar FC. Indirect effects of a non-target species, Pyrrhalta luteola (Chrysomelidae) on the biodeterioration of Brussels tapestries. Int Biodeterior Biodegrad 2004;54:297-302. [DOI:10.1016/j.ibiod.2003.12.005.]
35. Viitanen H. Factors affecting the development of biodeterioration in wooden constructions. Mater Struct 1994;27:483-93. [DOI:10.1007/BF02473453.]
36. Ali HE, Khattab SA, Al-Mukhtar M. The effect of biodeterioration by bird droppings on the degradation of stone built. Eng Geol Soc Territ - Vol 8 Preserv Cult Herit 2015:515-20. [DOI:10.1007/978-3-319-09408-3_91.]
37. Allsopp D, Seal K, Gaylarde C. Department of Microbiology MCB 314 Biodeterioration. 2004.
38. Mihajlovski A, Seyer D, Benamara H, Bousta F, Di Martino P. An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann Microbiol 2015;65:1243-55. [DOI:10.1007/s13213-014-0956-2.]
39. Tarsitani G, Moroni C, Cappitelli F, Pasquariello G, Maggi O. Microbiological analysis of surfaces of Leonardo da vinci's Atlantic codex: Biodeterioration risk. Int J Microbiol 2014;2014. [DOI:10.1155/2014/214364.]
40. Traversetti L, Bartoli F, Caneva G. Wind-driven rain as a bioclimatic factor affecting the biological colonization at the archaeological site of Pompeii, Italy. Int Biodeterior Biodegrad 2018;134:31-8. [DOI:10.1016/j.ibiod.2018.07.016.]
41. Manso S, Mestres G, Ginebra MP, De Belie N, Segura I, Aguado A. Development of a low pH cementitious material to enlarge bioreceptivity. Constr Build Mater 2014;54:485-95. [DOI:10.1016/j.conbuildmat.2014.01.001.]
42. Shirakawa MA, Beech IB, Tapper R, Cincotto MA, Gambale W. The development of a method to evaluate bioreceptivity of indoor mortar plastering to fungal growth. Int Biodeterior Biodegrad 2003;51:83-92. [DOI:10.1016/S0964-8305(01)00129-9.]
43. Miller AZ, Leal N, Laiz L, Rogerio-Candelera MA, Silva RJC, Dionísio A, et al. Primary bioreceptivity of limestones used in southern European monuments. Geol Soc Spec Publ 2010;331:79-92. [DOI:10.1144/SP331.6.]
44. Manso S, De Muynck W, Segura I, Aguado A, Steppe K, Boon N, et al. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth. Sci Total Environ 2014;481:232-41. [DOI:10.1016/j.scitotenv.2014.02.059.]
45. Miller AZ, Sanmartín P, Pereira-Pardo L, Dionísio A, Saiz-Jimenez C, Macedo MF, et al. Bioreceptivity of building stones: A review. Sci Total Environ 2012;426:1-12. [DOI:10.1016/j.scitotenv.2012.03.026.]
46. Miller A, Dionísio A, Macedo MF. Primary bioreceptivity: A comparative study of different Portuguese lithotypes. Int Biodeterior Biodegrad 2006;57:136-42. [DOI:10.1016/j.ibiod.2006.01.003.]
47. Prieto B, Silva B. Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int Biodeterior Biodegrad 2005;56:206-15. [DOI:10.1016/j.ibiod.2005.08.001.]
48. Guillitte O. Bioreceptivity: a new concept for building ecology studies. Sci Total Environ 1995;167:215-20. [DOI:10.1016/0048-9697(95)04582-L.]
49. Gonzalez JM, Sainz-Jimenez C. Microbial diversity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J Sep Sci 2004;27:174-80. [DOI:10.1002/jssc.200301609.]
50. Borrego S, Guiamet P, Gómez de Saravia S, Batistini P, Garcia M, Lavin P, et al. The quality of air at archives and the biodeterioration of photographs. Int Biodeterior Biodegrad 2010;64:139-45. [DOI:10.1016/j.ibiod.2009.12.005.]
51. Leite AMO, Mayo B, Rachid CTCC, Peixoto RS, Silva JT, Paschoalin VMF, et al. Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol 2012;31:215-21. [DOI:10.1016/j.fm.2012.03.011.]
52. Salvadori O. Characterisation of Endolithic Communities of Stone Monuments and Natural Outcrops. Microbes Art, Springer US; 2000, p. 89-101. [DOI:10.1007/978-1-4615-4239-1_7.]
53. Sterflinger K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol Rev 2010;24:47-55. [DOI:10.1016/j.fbr.2010.03.003.]
54. Ascaso C, Wierzchos J, Castello R. Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms. Int Biodeterior Biodegrad 1998;42:29-38. [DOI:10.1016/S0964-8305(98)00043-2.]
55. Rakotonirainy MS, Heude E, Lavédrine B. Isolation and attempts of biomolecular characterization of fungal strains associated to foxing on a 19th century book. J Cult Herit 2007;8:126-33. [DOI:10.1016/j.culher.2007.01.003.]
56. Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiology 2009;155:3476-90. [DOI:10.1099/mic.0.032508-0.]
57. Videla HA, Guiamet PS, De Saravia SG. Biodeterioration of Mayan archaeological sites in the Yucatan Peninsula, Mexico. Int Biodeterior Biodegrad 2000;46:335-41. [DOI:10.1016/S0964-8305(00)00106-2.]
58. Caldeira AT, Schiavon N, Mauran G, Salvador C, Rosado T, Mirão J, et al. On the biodiversity and biodeteriogenic activity of microbial communities present in the hypogenic environment of the Escoural Cave, Alentejo, Portugal. Coatings 2021;11:1-17. [DOI:10.3390/coatings11020209.]
59. Soffritti I, D'Accolti M, Lanzoni L, Volta A, Bisi M, Mazzacane S, et al. The potential use of microorganisms as restorative agents: An update. Sustain 2019;11. [DOI:10.3390/su11143853.]
60. Unković N, Ljaljević Grbić M, Subakov-Simić G, Stupar M, Vukojević J, Jelikić A, et al. Biodeteriogenic and toxigenic agents on 17th century mural paintings and façade of the old church of the Holy Ascension (Veliki Krćimir, Serbia). Indoor Built Environ 2016;25:826-37. [DOI:10.1177/1420326X15587178.]
61. Dakal TC, Cameotra SS. Microbially induced deterioration of architectural heritages: Routes and mechanisms involved. Environ Sci Eur 2012;24. [DOI:10.1186/2190-4715-24-36.]
62. Otlewska A, Adamiak J, Gutarowska B. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects. vol. 61. 2014. [DOI:10.18388/abp.2014_1889.]
63. Sterflinger K, Little B, Pinar G, Pinzari F, de los Rios A, Gu JD. Future directions and challenges in biodeterioration research on historic materials and cultural properties. Int Biodeterior Biodegrad 2018;129:10-2. [DOI:10.1016/j.ibiod.2017.12.007.]
64. Gorbushina AA, Heyrman J, Dornieden T, Gonzalez-Delvalle M, Krumbein WE, Laiz L, et al. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene-Kreiensen, Germany). Int Biodeterior Biodegrad 2004;53:13-24. [DOI:10.1016/j.ibiod.2003.07.003.]
65. Andersen CL, Hostetter G, Grigoryan A, Sauter G, Kallioniemi A. Improved procedure for fluorescence in situ hybridization on tissue microarrays. Cytometry 2001;45:83-6. [DOI:10.1002/1097-0320(20011001)45:23.0.CO;2-P.]
66. Lan W, Li H, Wang WD, Katayama Y, Gu JD. Microbial community analysis of fresh and old microbial biofilms on Bayon Temple sandstone of Angkor Thom, Cambodia. Microb Ecol 2010;60:105-15. [DOI:10.1007/s00248-010-9707-5.]
67. Negi A, Sarethy IP. Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses. Microb Ecol 2019;78:1014-29. [DOI:10.1007/s00248-019-01366-y.]
68. Perito B, Cavalieri D. Innovative metagenomic approaches for detection of microbial communities involved in biodeteriorattion of cultural heritage. IOP Conf. Ser. Mater. Sci. Eng., vol. 364, Institute of Physics Publishing; 2018. [DOI:10.1088/1757-899X/364/1/012074.]
69. Piñar G, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K. Microbial survey of the mummies from the capuchin catacombs of palermo, italy: Biodeterioration risk and contamination of the indoor air. FEMS Microbiol Ecol 2013;86:341-56. [DOI:10.1111/1574-6941.12165.]
70. Gutarowska B, Celikkol-Aydin S, Bonifay V, Otlewska A, Aydin E, Oldham AL, et al. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings. Front Microbiol 2015;6. [DOI:10.3389/fmicb.2015.00979.]
71. Capodicasa S, Fedi S, Porcelli AM, Zannoni D. The microbial community dwelling on a biodeteriorated 16th century painting. Int Biodeterior Biodegrad 2010;64:727-33. [DOI:10.1016/j.ibiod.2010.08.006.]
72. Neugebauer W, Leinberger DM, Petersen K, Schumacher U, Bachmann TT, Krekel C. The development of a DNA microarray for the rapid identification of moulds on works of art. Stud Conserv 2010;55:258-73. [DOI:10.1179/sic.2010.55.4.258.]
73. Maynard C, Berthiaume F, Lemarchand K, Harel J, Payment P, Bayardelle P, et al. Waterborne pathogen detection by use of oligonucleotide-based microarrays. Appl Environ Microbiol 2005;71:8548-57. [DOI:10.1128/AEM.71.12.8548-8557.2005.]
74. Warscheid T, Braams J. Biodeterioration of stone: A review. vol. 46. 2000. [DOI:10.1016/S0964-8305(00)00109-8.]
75. Larbi JA. Microscopy applied to the diagnosis of the deterioration of brick masonry. Constr Build Mater 2004;18:299-307. [DOI:10.1016/j.conbuildmat.2004.02.002.]
76. Van Balen K. Expert system for evaluation of deterioration of ancient brick masonry structures. Sci Total Environ 1996;189-190:247-54. [DOI:10.1016/0048-9697(96)05215-1.]
77. Gutarowska B, Celikkol-Aydin S, Bonifay V, Otlewska A, Aydin E, Oldham AL, et al. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings. Front Microbiol 2015;6. [DOI:10.3389/fmicb.2015.00979.]
78. Gazzano C, Favero-Longo SE, Matteucci E, Roccardi A, Piervittori R. Index of Lichen Potential Biodeteriogenic Activity (LPBA): A tentative tool to evaluate the lichen impact on stonework. Int Biodeterior Biodegrad 2009;63:836-43. [DOI:10.1016/j.ibiod.2009.05.006.]
79. Lopez-Arce P, Garcia-Guinea J. Weathering traces in ancient bricks from historic buildings. vol. 40. 2005. [DOI:10.1016/j.buildenv.2004.08.027.]
80. Gu JD, Ford TE, Berke NS, Mitchell R. Biodeterioration of concrete by the fungus Fusarium. Int Biodeterior Biodegrad 1998;41:101-9. [DOI:10.1016/S0964-8305(98)00034-1.]
81. Sanchez-Silva M, Rosowsky D V. Biodeterioration of Construction Materials: State of the Art and Future Challenges. J Mater Civ Eng 2008;20:352-65. [DOI:10.1061/(asce)0899-1561(2008)20:5(352).]
82. Nica D, Davis JL, Kirby L, Zuo G, Roberts DJ. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. vol. 46. 2000. [DOI:10.1016/S0964-8305(00)00064-0.]
83. Turick CE, Berry CJ. Review of concrete biodeterioration in relation to nuclear waste. J Environ Radioact 2016;151:12-21. [DOI:10.1016/j.jenvrad.2015.09.005.]
84. Marquez-Peñaranda JF, Sanchez-Silva M, Husserl J, Bastidas-Arteaga E. Effects of biodeterioration on the mechanical properties of concrete. Mater Struct Constr 2016;49:4085-99. [DOI:10.1617/s11527-015-0774-4.]
85. Bielefeldt A, Gutierrez-Padilla MGD, Ovtchinnikov S, Silverstein J, Hernandez M. Bacterial Kinetics of Sulfur Oxidizing Bacteria and Their Biodeterioration Rates of Concrete Sewer Pipe Samples. J Environ Eng 2010;136:731-8. [DOI:10.1061/(asce)ee.1943-7870.0000215.]
86. Javaherdashti R, Nikraz H, Borowitzka M, Moheimani N, Olivia M. On the impact of algae on accelerating the biodeterioration/biocorrosion of reinforced concrete: A mechanistic review. vol. 36. 2009.
87. Hudon E, Mirza S, Frigon D. Biodeterioration of Concrete Sewer Pipes: State of the Art and Research Needs. J Pipeline Syst Eng Pract 2011;2:42-52. [DOI:10.1061/(asce)ps.1949-1204.0000072.]
88. Cutler N, Viles H. Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol J 2010;27:630-46. [DOI:10.1080/01490451003702933.]
89. Warscheid T. The evaluation of biodeterioration processes on cultural objects and approaches for their effective control. Art, Biol Conserv Biodeterior Work Art 2003:14-27.
90. Szostak-Kotowa J. Biodeterioration of textiles. Int Biodeterior Biodegrad 2004;53:165-70. [DOI:10.1016/S0964-8305(03)00090-8.]
91. Rotolo V, Barresi G, Di Carlo E, Giordano A, Lombardo G, Crimi E, et al. Plant extracts as green potential strategies to control the biodeterioration of cultural heritage. Int J Conserv Sci 2016;7:839-46.
92. Allsopp C, Allsopp D. An updated survey of commercial products used to protect materials against biodeterioration. Int Biodeterior Biodegrad 2001;48:243. [DOI:10.1016/S0964-8305(01)00088-9.]
93. Di Carlo E, Barresi G, Palla F. Biodeterioration. Biotechnol Conserv Cult Herit 2017:1-30. [DOI:10.1007/978-3-319-46168-7_1.]
94. Palla F, Barresi G. Biotechnology and conservation of cultural heritage. Biotechnol Conserv Cult Herit 2017:1-100. [DOI:10.1007/978-3-319-46168-7.]
95. Sarró MI, García AM, Rivalta VM, Moreno DA, Arroyo I. Biodeterioration of the Lions Fountain at the Alhambra Palace, Granada (Spain). Build Environ 2006;41:1811-20. [DOI:10.1016/j.buildenv.2005.07.029.]
96. Lavin P, Gómez de Saravia SG, Guiamet PS. An environmental assessment of biodeterioration in document repositories. Biofouling 2014;30:561-9. [DOI:10.1080/08927014.2014.897334.]
97. Poyatos F, Morales F, Nicholson AW, Giordano A. Physiology of biodeterioration on canvas paintings. J Cell Physiol 2018;233:2741-51. [DOI:10.1002/jcp.26088.]
98. Orlita A. Microbial biodeterioration of leather and its control: A review. Int Biodeterior Biodegrad 2004;53:157-63. [DOI:10.1016/S0964-8305(03)00089-1.]
99. Ditaranto N, Van Der Werf ID, Picca RA, Sportelli MC, Giannossa LC, Bonerba E, et al. Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stoneworks. New J Chem 2015;39:6836-43. [DOI:10.1039/c5nj00527b.]
100. Pinheiro AC, Mesquita N, Trovão J, Soares F, Tiago I, Coelho C, et al. Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. J Cult Herit 2019;36:275-85. [DOI:10.1016/j.culher.2018.07.008.]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb