The Importance of Organic Residues as a Bio Archive of the Artworks Archeological and Paleontological Remains - Journal of Research on Archaeometry

قابل توجه نویسندگان محترم، مقالاتی که از تاریخ 1404/07/13 برای نشریه ارسال می شوند،  شامل پرداخت هزینه بررسی نخواهند شد.

------------------------------------------ ---------------------------------------
year 11, Issue 1 (2025)                   JRA 2025, 11(1): 0-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chahardoli Z. (2025). The Importance of Organic Residues as a Bio Archive of the Artworks, Archeological, and Paleontological Remains. JRA. 11(1), : 11 doi:10.61882/jra.2025.11.111
URL: http://jra-tabriziau.ir/article-1-459-en.html
Department of Chemistry, Art Diagnosis Laboratory by Microchemistry and Microscopy, University of Bologna, Bologna, Italy , zohreh.chahardoli2@unibo.it
Abstract:   (1366 Views)

Heritage science is a broad and interdisciplinary scientific field that focuses on the characterization of materials, techniques, deterioration processes, and the preservation of cultural assets. This field encompasses a wide array of subjects and places particular emphasis on the investigation of complex and heterogeneous materials—such as textiles, paintings, architectural structures, as well as human and fossil remains—all of which contribute collectively to the reconstruction of the past and the deepening of our historical understanding through time. Over time, all materials are influenced by environmental factors, and their interactions with surrounding conditions can lead to alterations driven by chemical, physical, and biological processes. Among these materials, organic components—particularly proteinaceous compounds—play a pivotal role. In prehistoric archaeology and geological contexts, proteins provide valuable insights into ancient diets, health status, and even evolutionary adaptations. In the context of artworks, the analysis of proteins can reveal important information regarding production techniques, fabrication processes, and restoration strategies. Furthermore, protein studies offer clues that help improve our understanding of past cultural practices. Due to their low abundance, interaction with mineral matrices, and continuous degradation, the development of analytical methods that both aid in sample preservation and enhance our understanding of degradation mechanisms is essential. Such research forms the foundation of advancements in cultural heritage conservation science and is crucial for ensuring the longevity and structural integrity of historical objects. The aim of this study is to provide a concise overview of the importance of investigating historical proteinaceous materials and to explore recent approaches in their recovery, identification, and analysis. This work seeks to highlight the role of proteins as valuable informational resources in the fields of archaeology, art conservation, and biogeo-heritage.

Article number: 11
Full-Text [PDF 829 kb]   (148 Downloads)    
Technical Note: Mini Review Paper | Subject: Archaeometry
Received: 2025/04/8 | Accepted: 2025/06/25 | Published: 2025/06/30 | ePublished: 2025/06/30

References
1. Açil, Y., Mobasseri, A. E., Warnke, P. H., Terheyden, H., Wiltfang, J., & Springer, I. (2005). Detection of mature collagen in human dental enamel. Calcified Tissue International, 76(2), 121-126. [DOI:10.1007/s00223-004-0122-0]
2. Adler, C. J., Haak, W., Donlon, D., & Cooper, A. (2011). Survival and recovery of DNA from ancient teeth and bones. Journal of Archaeological Science, 38(5), 956-964. [DOI:10.1016/j.jas.2010.11.010]
3. Asara, J. M., Schweitzer, M. H., Freimark, L. M., Phillips, M., & Cantley, L. C. (2007). Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science, 316(5822), 280-285. [DOI:10.1126/science.1137614]
4. Baker, K. H., Gray, H. W. I., Lister, A. M., Spassov, N., Welch, A. J., Trantalidou, K., De Cupere, B., Bonillas, E., De Jong, M., Çakırlar, C., Sykes, N., & Hoelzel, A. R. (2024). Ancient and modern DNA track temporal and spatial population dynamics in the European fallow deer since the Eemian interglacial. Scientific Reports, 14(1). [DOI:10.1038/s41598-023-48112-6]
5. Baldreki, C., Burnham, A., Conti, M., Wheeler, L., Simms, M. J., Barham, L., White, T. S., & Penkman, K. (2024). Investigating the potential of African land snail shells (Gastropoda: Achatininae) for amino acid geochronology. Quaternary Geochronology, 79, 101473. [DOI:10.1016/j.quageo.2023.101473]
6. Bertoglio, B., Messina, C., Cappella, A., Maderna, E., Mazzarelli, D., Lucheschi, S., Sardanelli, F., Sconfienza, L. M., Sforza, C., & Cattaneo, C. (2021). Bone tissue preservation in seawater environment: a preliminary comparative analysis of bones with different post-mortem histories through anthropological and radiological perspectives. International Journal of Legal Medicine, 135(6), 2581-2594. [DOI:10.1007/s00414-021-02636-6]
7. Biancolillo, A., Tomassetti, M., Bucci, R., Izzo, S., Candilio, F., & Marini, F. (2019). Ancient human bones studied and compared by near infrared spectroscopy, thermogravimetry and chemometrics. Journal of Near Infrared Spectroscopy, 27(1), 6-14. [DOI:10.1177/0967033518819417]
8. Buckley, M. (2014). Proteome degradation in ancient bone: Diagenesis and phylogenetic potential. Palaeogeography, Palaeoclimatology, Palaeoecology, 416, 69-79. [DOI:10.1016/j.palaeo.2014.06.026]
9. Buckley, M. (2018). Zooarchaeology by mass spectrometry (ZooMS) collagen fingerprinting for the species identification of archaeological bone fragments. In C. Giovas & M. LeFebvre (Eds.), Zooarchaeology in Practice (pp. 209-224). Springer, Cham. https://doi.org/10.1007/978-3-319-64763-0_12 [DOI:10.1007/978-3-319-64763-0-12]
10. Buonasera, T., Eerkens, J., Malarchik, D., Panich, L. M., Canzonieri, C., Zimmer, C., Clough, C., Ostrander, T., Sutton, A., Salemi, M., & Parker, G. (2024). Immune proteins recovered in tooth enamel as a biochemical record of health in past populations: Paleoproteomic analysis of Mission Period Native Californians. Journal of Archaeological Science, 171, 106069. [DOI:10.1016/j.jas.2024.106069]
11. Cappellini, E., Prohaska, A., Racimo, F., Welker, F., Pedersen, M. W., Allentoft, M. E., De Barros Damgaard, P., Gutenbrunner, P., Dunne, J., Hammann, S., Roffet-Salque, M., Ilardo, M., Víctor Moreno-Mayar, J., Wang, Y., Sikora, M., Vinner, L., Urgen Cox, J., Evershed, R. P., & Willerslev, E. (2018). Ancient biomolecules and evolutionary inference. Annual Review of Biochemistry, 87, 913-942. https://doi.org/10.1146/annurev-biochem-062917-012002 [DOI:10.1146/annurev-biochem-062917-012224]
12. Cappellini, E., Welker, F., Pandolfi, L., Ramos-Madrigal, J., Samodova, D., Rüther, P. L., Fotakis, A. K., Lyon, D., Moreno-Mayar, J. V., Bukhsianidze, M., Rakownikow Jersie-Christensen, R., Mackie, M., Ginolhac, A., Ferring, R., Tappen, M., Palkopoulou, E., Dickinson, M. R., Stafford, T. W., Chan, Y. L., ... Willerslev, E. (2019). Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature, 574(7776), 103-107. [DOI:10.1038/s41586-019-1555-y]
13. Chahardoli, Z. (2025). Development of New Analytical Methods for Characterization of Organic Components in Art and Archeological Samples [Doctoral dissertation, University of Bologna]. Department of Chemistry.
14. Chowdhury, M. P., Campbell, S., & Buckley, M. (2021). Proteomic analysis of archaeological ceramics from Tell Khaiber, southern Iraq. Journal of Archaeological Science, 132, 105414. [DOI:10.1016/j.jas.2021.105414]
15. Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., Wess, T. J., Csapò, J., Millard, A. R., & Turner-Walker, G. (2002). The survival of organic matter in bone: A review. Archaeometry, 44(3), 383-394. [DOI:10.1111/1475-4754.t01-1-00071]
16. Cucina, A., Schmidt, A. L., Di Gianvincenzo, F., Mackie, M., Dove, C., Jakobsen, A. R., Grønnow, B., Appelt, M., & Cappellini, E. (2024). Paleoproteomic identification of the species used in fourteenth century gut-skin garments from the archaeological site of Nuulliit, Greenland. Scientific Reports, 14(1). [DOI:10.1038/s41598-024-63243-0]
17. Demarchi, B. (2020). Amino Acids and Proteins in Fossil Biominerals: An Introduction for Archaeologists and Palaeontologists. Wiley. [DOI:10.1002/9781119089537]
18. Demarchi, B., Rogers, K., Fa, D. A., Finlayson, C. J., Milner, N., & Penkman, K. E. H. (2013). Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system. Quaternary Geochronology, 16, 144-157. [DOI:10.1016/j.quageo.2012.03.016]
19. Demarchi, B., Stiller, J., Grealy, A., Mackie, M., Deng, Y., Gilbert, T., Clarke, J., Legendre, L. J., Boano, R., Sicheritz-Pontén, T., Magee, J., Zhang, G., Bunce, M., Collins, M. J., Miller, G., & Dolores Piperno, M. R. (2022). Ancient proteins resolve controversy over the identity of Genyornis eggshell. Proceedings of the National Academy of Sciences, 119(7), e2109326119. [DOI:10.1073/pnas.2109326119]
20. Demarchi, B., Williams, M. G., Milner, N., Russell, N., Bailey, G., & Penkman, K. (2011). Amino acid racemization dating of marine shells: A mound of possibilities. Quaternary International, 239(1-2), 114-124. [DOI:10.1016/j.quaint.2010.05.029]
21. Díaz-Cortés, A., Del Valle, H., López-Polín, L., Otero, J., Cáceres, I., Valtierra, N., Pineda, A., Saladié, P., & Vallverdú, J. (2024). Diagnosis of archaeological bones: Analyzing the state of conservation of lower Pleistocene bones through diagenesis methods. Microchemical Journal, 206, 111353. [DOI:10.1016/j.microc.2024.111353]
22. Dickinson, M. R., Lister, A. M., & Penkman, K. E. H. (2019). A new method for enamel amino acid racemization dating: A closed system approach. Quaternary Geochronology, 50, 29-46. [DOI:10.1016/j.quageo.2018.11.005]
23. Dickinson, M. R., Scott, K., Adams, N. F., Lister, A. M., & Penkman, K. E. H. (2024). Amino acid dating of pleistocene mammalian enamel from the river thames terrace sequence: A multi-taxon approach. Quaternary Geochronology, 82, 101543. [DOI:10.1016/j.quageo.2024.101543]
24. Eriksson, G., Linderholm, A., Fornander, E., Kanstrup, M., Schoultz, P., Olofsson, H., & Lidén, K. (2008). Same island, different diet: cultural evolution of food practice on Öland, Sweden, from the Mesolithic to the Roman Period. Journal of Anthropological Archaeology, 27(4), 520-543. [DOI:10.1016/j.jaa.2008.08.004]
25. Fiddyment, S., Teasdale, M. D., Vnouček, J., Lévêque, É., Binois, A., & Collins, M. J. (2019). So you want to do biocodicology? A field guide to the biological analysis of parchment. Heritage Science, 7(1). [DOI:10.1186/s40494-019-0278-6]
26. Figueiredo, M. M., Gamelas, J. A. F., & Martins, A. G. (2012). Characterization of bone and bone-based graft materials using FTIR spectroscopy. In Bone Grafting (pp. 143-162). InTech. [DOI:10.5772/36379]
27. Gatti, L., Troiano, F., Vacchini, V., Cappitelli, F., & Balloi, A. (2021). An in vitro evaluation of the biocidal effect of oregano and cloves' volatile compounds against microorganisms colonizing an oil painting-a pioneer study. Applied Sciences (Switzerland), 11(1), 78. [DOI:10.3390/app11010078]
28. Gibson, C. W. (2011). The amelogenin proteins and enamel development in humans and mice. Journal of Oral Biosciences, 53(3), 248-256. [DOI:10.2330/joralbiosci.53.248]
29. Gil-Bona, A., & Bidlack, F. B. (2020). Tooth enamel and its dynamic protein matrix. International Journal of Molecular Sciences, 21(12), 4458. [DOI:10.3390/ijms21124458]
30. Haghighi, Z., Mackie, M., Apalnes Ørnhøi, A., Ramsøe, A., Olstad, T. M., Armitage, S. J., Henshilwood, C. S., & Cappellini, E. (2024). Palaeoproteomic identification of the original binder and modern contaminants in distemper paints from Uvdal stave church, Norway. Scientific Reports, 14(1). [DOI:10.1038/s41598-024-63455-4]
31. Haynes, S., Searle, J. B., Bretman, A., & Dobney, K. M. (2002). Bone preservation and ancient DNA: The application of screening methods for predicting DNA survival. Journal of Archaeological Science, 29(6), 585-592. [DOI:10.1006/jasc.2001.0731]
32. Hendy, E. J., Tomiak, P. J., Collins, M. J., Hellstrom, J., Tudhope, A. W., Lough, J. M., & Penkman, K. E. H. (2012). Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications. Geochimica et Cosmochimica Acta, 86, 338-353. [DOI:10.1016/j.gca.2012.02.020]
33. Hendy, J., Colonese, A. C., Franz, I., Fernandes, R., Fischer, R., Orton, D., Lucquin, A., Spindler, L., Anvari, J., Stroud, E., Biehl, P. F., Speller, C., Boivin, N., Mackie, M., Jersie-Christensen, R. R., Olsen, J. V., Collins, M. J., Craig, O. E., & Rosenstock, E. (2018). Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers. Nature Communications, 9(1), 4713. [DOI:10.1038/s41467-018-06335-6]
34. Hendy, J., Welker, F., Demarchi, B., Speller, C., Warinner, C., & Collins, M. J. (2018). A guide to ancient protein studies. Nature Ecology and Evolution, 2(5), 791-799. [DOI:10.1038/s41559-018-0510-x]
35. Leichliter, J. N., Lüdecke, T., Foreman, A. D., Bourgon, N., Duprey, N. N., Vonhof, H., Souksavatdy, V., Bacon, A. M., Sigman, D. M., Tütken, T., & Martínez-García, A. (2023). Tooth enamel nitrogen isotope composition records trophic position: a tool for reconstructing food webs. Communications Biology, 6(1), 382. [DOI:10.1038/s42003-023-04744-y]
36. Linderholm, A., Fornander, E., Eriksson, G., Mörth, C-M., & Lidén, K. (2014). Increasing Mobility at the Neolithic/Bronze Age Transition - sulphur isotope evidence from Öland, Sweden. Internet Archaeology, 37. [DOI:10.11141/ia.37.10]
37. Loy, C., Brock, F., & Dyer, C. (2023). Investigating diagenesis of archaeological bones from Etton Causewayed enclosure, UK. Quaternary International, 660, 21-30. [DOI:10.1016/j.quaint.2022.12.012]
38. Lüdecke, T., Kullmer, O., Wacker, U., Sandrock, O., Fiebig, J., Schrenk, F., & Mulch, A. (2018). Dietary versatility of Early Pleistocene hominins. Proceedings of the National Academy of Sciences of the United States of America, 115(52), 13330-13335. [DOI:10.1073/pnas.1809439115]
39. Lüdecke, T., Leichliter, J. N., Aldeias, V., Bamford, M. K., Biro, D., Braun, D. R., Capelli, C., Cybulski, J. D., Duprey, N. N., Ferreira da Silva, M. J., Foreman, A. D., Habermann, J. M., Haug, G. H., Martínez, F. I., Mathe, J., Mulch, A., Sigman, D. M., Vonhof, H., Bobe, R., ... Martínez-García, A. (2022). Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, central Mozambique. Frontiers in Ecology and Evolution, 10, 958032. [DOI:10.3389/fevo.2022.958032]
40. Lugli, F., Cipriani, A., Capecchi, G., Ricci, S., Boschin, F., Boscato, P., Iacumin, P., Badino, F., Mannino, M. A., Talamo, S., Richards, M. P., Benazzi, S., & Ronchitelli, A. (2019). Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy. Nature Ecology & Evolution, 3(6), 905-911. [DOI:10.1038/s41559-019-0900-8]
41. Paterson, R. S., Mackie, M., Capobianco, A., Heckeberg, N. S., Munir, F., Patramanis, I., Ramos-Madrigal, J., Liu, S., Ramsøe, D., Dickinson, M. R., Baldreki, C., Gilbert, M., Sardella, R., Scorrano, G., Racimo, F., Willerslev, E., Penkman, K. E., Olsen, J. V., MacPhee, R. DE, ... Sinclair Paterson, R. (2024). A 20+ Ma old enamel proteome from Canada's High Arctic reveals diversification of Rhinocerotidae in the middle Eocene-Oligocene. bioRxiv. [DOI:10.1101/2024.06.07.597871]
42. Prieto-Bonete, G., Pérez-Cárceles, M. D., Maurandi-López, A., Pérez-Martínez, C., & Luna, A. (2019). Association between protein profile and postmortem interval in human bone remains. Journal of Proteomics, 192, 54-63. [DOI:10.1016/j.jprot.2018.08.008]
43. Rancourt, A. C., Sainte-Marie, S., Blackmore, V., & Currie, K. A. (2023). Evaluation of low-cost bone and teeth processing methods for automated DNA extraction. Forensic Science International: Reports, 8, 100328. [DOI:10.1016/j.fsir.2023.100328]
44. Tütken, T., Kaiser, T. M., Vennemann, T., & Merceron, G. (2013). Opportunistic Feeding Strategy for the Earliest Old World Hypsodont Equids: Evidence from Stable Isotope and Dental Wear Proxies. PLoS ONE, 8(9), e74463. [DOI:10.1371/journal.pone.0074463]
45. Van Der Valk, T., Pečnerová, P., Díez-del-Molino, D., Bergström, A., Oppenheimer, J., Hartmann, S., Xenikoudakis, G., Thomas, J. A., Dehasque, M., Sağlıcan, E., Fidan, F. R., Barnes, I., Liu, S., Somel, M., Heintzman, P. D., Nikolskiy, P., Shapiro, B., Skoglund, P., Hofreiter, M., ... Dalén, L. (2021). Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 591(7849), 265-269. [DOI:10.1038/s41586-021-03224-9]
46. Warinner, C., Korzow Richter, K., & Collins, M. J. (2022). Paleoproteomics. Chemical Reviews, 122(16), 13401-13446. [DOI:10.1021/acs.chemrev.1c00703]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb