ارزیابی تأثیر آهن بر فرایند تخریب ساختاری چرم کروم در شرایط مدفون بر اساس شاخص‌های تخریب در طیف‌های FTIR - پژوهه باستان سنجی
سال 5، شماره 2 - ( 1398 )                   سال 5 شماره 2 صفحات 91-104 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Koochakzaei A, Saidi Mehrabad M. Evaluation of the Impact of Iron on Structural deterioration of Chrome Leather in Buried Conditions, Based on Degradation Indices in FTIR Spectra. JRA. 2019; 5 (2) :91-104
URL: http://jra-tabriziau.ir/article-1-215-fa.html
کوچکزایی علیرضا، سعیدی مهرآباد مهسا. ارزیابی تأثیر آهن بر فرایند تخریب ساختاری چرم کروم در شرایط مدفون، بر اساس شاخص‌های تخریب در طیف‌های FTIR. پژوهه باستان سنجی. 1398; 5 (2) :91-104

URL: http://jra-tabriziau.ir/article-1-215-fa.html


1- دانشگاه هنر اسلامی تبریز ، alireza.k.1989@gmail.com
2- دانشگاه هنر اسلامی تبریز
چکیده:   (1192 مشاهده)
آهن و محصولات خوردگی آن از جمله عوامل موثر در فرایند تخریب آثار چرمی، به‌ویژه نمونه‌های مدفون هستند. بر این اساس هدف از این مطالعه، ارزیابی تأثیرات محصولات خوردگی آهن در شدت تخریب چرم است. در این راستا یک نمونه چرمی حاصل از خاک‌برداری محوطه کارخانه چرم خسروی تبریز (دانشگاه هنر اسلامی تبریز) مورد مطالعه قرار گرفت. بر اساس خصوصیات ظاهری، این چرم در شرایط تدفین در مجاورت آهن و محصولات خوردگی آن قرار داشته است. جهت ارزیابی ساختاری بخش‌های مختلف چرم و شدت تخریب آنها، از آزمون نقطه‌ای شناسایی آهن، اندازه گیری میزان خاکستر چرم، µ-XRF، طیف سنجی UV-Vis و FTIR و بررسی میکروسکوپی استفاده شد. همچنین طیف‌های FTIR بر اساس تابع گوسی برازش شد و مورد بررسی قرار گرفت. نتایج حاصل نشان داد که این نمونه با استفاده از نمک‌های کروم دباغی شده و احتمالاً از آهک جهت موزدایی آن استفاده شده است. بررسی چهار نقطه از این نمونه، حضور آهن با میزان متفاوت را در بخش‌های مختلف چرم نشان داد، به عبارتی بخشی از چرم در تماس مستقیم با آهن قرار داشته است و به مرور محصولات خوردگی به ساختار چرم نفوذ کرده و موجب اختلاف در میزان آهن در بخش‌های مختلف آن شده‌اند. بررسی خصوصیات ساختاری این نواحی نشان داد که با افزایش آهن، تغییر در یکپارچگی ساختار مارپیچ سه جزئی کلاژن و هیدرولیز آن افزایش یافته و از طرفی تشدید اکسایش کلاژن را نیز به‌همراه داشته است.
 
واژه‌های کلیدی: چرم، کلاژن، دباغی کروم، تخریب چرم، آهن، FTIR
متن کامل [PDF 1504 kb]   (236 دریافت)    
یاداداشت علمی: پژوهشي | موضوع مقاله: حفاظت و مرمت میراث فرهنگی
دریافت: 1398/8/18 | پذیرش: 1398/10/3 | انتشار: 1398/10/9 | انتشار الکترونیک: 1398/10/9

فهرست منابع
1. Thomson, R., Leather, in Conservation Science: Heritage Materials, E. May and M. Jones, Editors. 2006, Cambridge: The Royal Society of Chemistry. p. 92-120.
2. Fredericks, M., Progress in leather conservation. WAAC Newsletter, 1997. 19(2): p. 29-32. [doi.org/10.1016/S0196-4399(97)80006-2] [DOI:10.1016/S0196-4399(97)80006-2]
3. Koochakzaei, A., Structural study of leather relics and assessment of softening and their treatment methods (Case study: a leather bottle attributed to the Seljuk period), M.A. thesis in conservation and restoration of historic and cultural property. 2013, Art University of Isfahan: Isfahan, Iran. [In Persian]
4. Atkin, W.R. and F.C. Thompson, Proctor's Leather Chemists' Pocket Book. 3rd edition ed. 1937, London: E. & E.N. Spon.
5. Kanagy, J.R., Influence of Copper and Iron Salts on The Behavior of Leather in The Oxygen Bomb. Journal of research of the National Bureau of Standards, 1938. 20(6): p. 849-857. [doi.org/10.6028/jres.020.008] [DOI:10.6028/jres.020.008]
6. Bowes, J.H. and A.S. Raistrick, The Action of Heat and Moisture on Leather: Part I. The Storage of a Variety of Commercial Leathers at 40°C and 100per Thousand R.H. Journal of the American Leather Chemists Association, 1961. 56(11): p. 606-615.
7. Bowes, J.H. and A.S. Raistrick, The Action of Heat and Moisture on Leather. Part V. Chemical Changes in Collagen and Tanned Collagen. Journal of American Leather Chemists Association, 1964. 59(4): p. 201-215.
8. Bowes, J.H. and A.S. Raistrick, The Action of Heat and Moisture on Leather. Part VI. Degradation of the Collagen. Journal of American Leather Chemists Association, 1967. 62(4): p. 240-257.
9. Raistrick, A.S., The Action of Heat and Moisture on Leather. Part II. the Storage of Vegetable, Chrome, Semichrome, and Chrome Retan Leathers at Forty and Sixty Degrees Centigrade and 100 Percent R.H. for Varying Periods of Time. Journal of the American Leather Chemists Association, 1961. 56(11): p. 616-632.
10. Bowes, J.H. and J.E. Taylor, Effect of Dry Heat on Collagen and Leather. Journal of American Leather Chemists Association, 1971. 66(3): p. 96-117.
11. Larsen, R., et al., Amino Acid Analysis: Collagen in Vegetable Tanned Leather, in Environment Leather Project: Deterioration and Conservation of Vegetable Tanned Leather. 1997, The Royal Danish Academy of Fine Arts, School of Conservation. p. 39-68.
12. Bowden, D.J. and P. Brimblecombe, The rate of metal catalyzed oxidation of sulfur dioxide in collagen surrogates. Journal of Cultural Heritage, 2003. 4(2): p. 137-147. [doi.org/10.1016/S1296-2074(03)00025-6] [DOI:10.1016/S1296-2074(03)00025-6]
13. Creangă, D.M., The Inventory and Classification of Types of Damage to Objects From Ethnographic Collections. Codrul Cosminului, 2010. 16(2): p. 21-30.
14. Lama, A., Antunes, A. P. M., Fletcher, Y., Guthrie-Strachan, J., & Vidler, K., Investigation of acid-deterioration in leather leading towards finding a suitable product for treatment, in 114th Society of Leather Technologists and Chemists (SLTC) Conference. 2011: University of Northampton, Northampton, UK.
15. Ohlídalová, M., Kučerová, I., Brezová, V., Cílová, Z., & Michalcová, A., Influence of metal cations on leather degradation. Journal of Cultural Heritage, 2017. 24: p. 86-92. [doi.org/10.1016/j.culher.2016.10.013] [DOI:10.1016/j.culher.2016.10.013]
16. Koochakzaei, A., H. Ahmadi, and S. Mallakpour, A review of the effect of copper and iron on deterioration of historical leathers, in 5th Iranian congress of trace elements. 2016: Tarbiat Modares University, Tehran, Iran.
17. Puica, N.M. and E. Ardelean, The industrial pollution impact on religious heritage in Romania. European Journal of Science and Theology, 2008. 4(2): p. 51-59.
18. Haines, B.M., Deterioration in leather bookbindings - our present state of knowledge. The Electronic British Library Journal, 1977. 3(1): p. 59-70.
19. Koochakzaei, A. and M.M. Achachluei, Red Stains on Archaeological Leather: Degradation Characteristics of a Shoe from the 11th-13th Centuries (Seljuk Period, Iran). Journal of the American Institute for Conservation, 2015. 54(1): p. 45-56. [doi.org/10.1179/1945233014Y.0000000033] [DOI:10.1179/1945233014Y.0000000033]
20. Duki, A., et al., The stability of metal-tanned and semi-metal tanned collagen, in XXXII Congress of the International :union: of Leather Technologists and Chemists Societies (IULTCS). 2013: Istanbul, Turkey.
21. Haines, B.M., The Fibre Structure of Leather, in Conservation of Leather and Related Materials M. Kite and R. Thomson, Editors. 2006, Butterworth-Heinemann: London. p. 11-21.
22. Vogel, A.I. and G. Svehla, Textbook of Macro and Semimicro Qualitative Inorganic Analysis. 1979, London and New York: Longman Scientific & Technical.
23. Koochakzaei, A., H. Ahmadi, and M. Mohammadi Achachluei, A laboratory Analysis on a Seljuk Leather Bottle Found from Qhalee Kooh-i Qaen Excavation. Journal of Archaeological Studies, 2014. 5(2): p. 129-143. [In Persian]
24. Cheng, M., Peng, W., Hua, P., Chen, Z., Sheng, J., Yang, J., & Wu, Y., In situ formation of pH-responsive Prussian blue for photoacoustic imaging and photothermal therapy of cancer. RSC Advances, 2017. 7(30): p. 18270-18276. [doi.org/10.1039/C7RA01879G] [DOI:10.1039/C7RA01879G]
25. Gallhofer, D. and G.B. Lottermoser, The Influence of Spectral Interferences on Critical Element Determination with Portable X-Ray Fluorescence (pXRF). Minerals, 2018. 8(8). [doi.org/10.3390/min8080320] [DOI:10.3390/min8080320]
26. Redus, R. Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software. Application Note XRF-1 2008. DOI: https://amptek.com/pdf/xrf_2.pdf.
27. Kolomazník, K., T. Fürst, and M. Bařinová, Non-linear diffusion model for optimization of leather manufacturing: Lime extraction from calcimine. Chemical Engineering Science, 2010. 65(2): p. 780-785. [doi.org/10.1016/j.ces.2009.09.030] [DOI:10.1016/j.ces.2009.09.030]
28. Covington, A.D., Tanning Chemistry: The Science of Leather. 2009: Royal Society of Chemistry.
29. Mühlen Axelsson, K., R. Larsen, and D.V.P. Sommer, Dimensional studies of specific microscopic fibre structures in deteriorated parchment before and during shrinkage. Journal of Cultural Heritage, 2012. 13(2): p. 128-136. [doi.org/10.1016/j.culher.2011.08.001] [DOI:10.1016/j.culher.2011.08.001]
30. Mühlen Axelsson, K., Larsen, R., Sommer, D. V. P., & Melin, R., Establishing the relation between degradation mechanisms and fibre morphology at microscopic level in order to improve damage diagnosis for parchments - A preliminary study, in ICOM-CC 18th Triennial Conference Preprints, J. Bridgland, Editor. 2017, Paris: International Council of Museums: Copenhagen.
31. Vila, A. and J.F. García, Analysis of the Chemical Composition of Red Pigments and Inks for the Characterization and Differentiation of Contemporary Prints. Analytical Letters, 2012. 45(10): p. 1274-1285. [doi.org/10.1080/00032719.2012.673100] [DOI:10.1080/00032719.2012.673100]
32. Rezende, J. C. T., Ramos, V. H. S., Oliveira, H. A., Oliveira, R. M. P. B., & Jesus, E., Removal of Cr(VI) from Aqueous Solutions Using Clay from Calumbi Geological Formation, N. Sra. Socorro, SE State, Brazil. Materials Science Forum, 2018. 912: p. 1-6. [doi.org/10.4028/www.scientific.net/MSF.912.1] [DOI:10.4028/www.scientific.net/MSF.912.1]
33. Namduri, H. and S. Nasrazadani, Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corrosion Science, 2008. 50(9): p. 2493-2497. [doi.org/10.1016/j.corsci.2008.06.034] [DOI:10.1016/j.corsci.2008.06.034]
34. Salama, W., M. El Aref, and R. Gaupp, Spectroscopic characterization of iron ores formed in different geological environments using FTIR, XPS, Mössbauer spectroscopy and thermoanalyses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 136: p. 1816-1826. [doi.org/10.1016/j.saa.2014.10.090] [DOI:10.1016/j.saa.2014.10.090]
35. Makó, É., Kovács, A., Katona, R., & Kristóf, T., Characterization of kaolinite-cetyltrimethylammonium chloride intercalation complex synthesized through eco-friend kaolinite-urea pre-intercalation complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 508: p. 265-273. [doi.org/10.1016/j.colsurfa.2016.08.035] [DOI:10.1016/j.colsurfa.2016.08.035]
36. Lu, B., Surface Reactivity of Hematite Nanoparticles, in Department of Chemistry. 2014, Umeå University: Umeå, Sweden.
37. Vyskočilová, G., Ebersbach, M., Kopecká, R., Prokeš, L., & Příhoda, J., Model study of the leather degradation by oxidation and hydrolysis. Heritage Science, 2019. 7(1): p. 26. [doi.org/10.1186/s40494-019-0269-7] [DOI:10.1186/s40494-019-0269-7]
38. Koochakzaei, A., H. Ahmadi, and S. Mallakpour, An experimental comparative study of the effect of skin type on the stability of vegetable leather under acidic condition. Journal of the American Leather Chemists Association, 2018. 113(11): p. 345-351.
3