Elemental Composition of Glass Beads Excavated from Saleh Davoud Tombs in Susa by micro-PIXE: Evidences of Trade of Glass Artifacts During the Parthian Period - Journal of Research on Archaeometry
------------------------------------------ ---------------------------------------
year 5, Issue 1 (2019)                   JRA 2019, 5(1): 143-166 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Agha-Aligol D, Jafarizadeh M, Rahbar M, Moradi M. Elemental Composition of Glass Beads Excavated from Saleh Davoud Tombs in Susa by micro-PIXE: Evidences of Trade of Glass Artifacts During the Parthian Period. JRA. 2019; 5 (1) :143-166
URL: http://jra-tabriziau.ir/article-1-188-en.html
1- Atomic Energy Organization of Iran , daghaaligol@aeoi.org.ir
2- Tarbiat Modares University
3- Research Institute of Cultural Heritage & Tourism
4- Atomic Energy Organization of Iran
Abstract:   (2627 Views)
Glass beads are unique objects to investigate the trade and exchange of these artifacts between different regions and cultures in the past. The site of Saleh Davoud and its ancient tombs in Susa were excavated in two seasons in 2000 and 2004, under the supervising of Mehdi Rahbar. From these excavations, a significant number of colored glass beads and a number of pieces of glass vessels have been unearthed. In regard to the other objects such as coins, potteries, etc., the period of these glass artifacts dated back to the Parthian-Elymae period. The majority of glass vessels found in Saleh Davoud are simple in shape (undecorated) with green hue in contrast to the glass beads which were considered in much diversity of color. Meanwhile, the different color lines and the gilded layer were used to decorate on the external surface of beads. In this study, totally 13 samples of glass objects from Saleh Davoud, including five samples from glass vessels and eight samples from colored beads have been selected to analyze by micro-ion beam techniques. The aims of the analysis of these objects by micro-PIXE were to focuse on the elemental composition of the main body (bulk glass composition) of the artifacts as well as the decorations which were applied in order to identify the raw materials and get information about the mineral pigments. The thickness and purity of the gold in the gilded layer that was used in a few glass beads were also measured by micro-RBS. The most important questions and hypotheses in this research are: 1- Whether glass beads and glass vessels are locally produced or are imported from other areas; 2- Determination of the pigments and the elements that are responsible for different surface decoration of beads; and 3- Measurement of thickness and the purity of the gold layer using Rutherford Back Scattering (RBS) technique to obtain information about the gilding process. The micro-Ion Beam analysis was performed with microprobe system manufactured by Oxford Instruments using the 3 MV Van de Graaff accelerators at the Nuclear Science & Technology Research Institute in Atomic Energy Organization of Iran. The samples were analyzed in a vacuum chamber using a beam of 2.5MeV protons focused to a diameter less than 10 μm. The beam current was in the range of 30 to 50 pA. Characteristic X-rays were detected using a Si(Li) detector with an active area of 60 mm2 positioned at an angle of 135◦ relative to the incident beam direction and with an energy resolution of 150 eV for Fe-Kα. Elemental analysis and measurement of the constituents of these samples show that all analyzed glasses from the Saleh Davoud are Soda-lime-silica glass type. However, the weight percentages of magnesium oxide (MgO) and potassium oxide (K2O) in the analyzed samples suggest that the glass beads are manufactured by the mineral soda (natron) flux, and glass vessels were used the plant ashes as a flux. The amount of MgO and K2O are the main reason for this identification. These two oxides in the glass beads are less than 1.5wt. %, while in the glass vessels are more than 2.5wt. %. Therefore, the glass beads were most likely imported from other areas such as Egypt or the eastern Mediterranean Sea through the trade and exchange of glass products to the Saleh Davoud. Moreover, based on the elemental maps from the micro-PIXE analysis, the elements which are responsible for, red, green, yellow and white colors might be identified as Fe, Cu and Pb.
Full-Text [PDF 2050 kb]   (575 Downloads)    
Technical Note: Original Research | Subject: Archaeometry
Received: 2019/04/19 | Accepted: 2019/06/19 | Published: 2019/07/1 | ePublished: 2019/07/1

1. Degryse P, Braekmans D. Elemental and isotopic analysis of ancient ceramics and glass 2014. [DOI:10.1016/B978-0-08-095975-7.01215-8]
2. Blomme A, Degryse P, Dotsika E, Ignatiadou D, Longinelli A, Silvestri A. Provenance of polychrome and colourless 8th-4th century BC glass from Pieria, Greece: a chemical and isotopic approach. J Archaeol Sci 2017;78:134-46. [DOI:10.1016/j.jas.2016.12.003]
3. Abd-Allah R. Chemical characterisation and manufacturing technology of late Roman to early Byzantine glass from Beit Ras/Capitolias, Northern Jordan. J Archaeol Sci 2010;37:1866-74. [DOI:10.1016/j.jas.2010.02.004]
4. Lin Y, Liu T, Toumazou MK, Counts DB, Kakoulli I. Chemical analyses and production technology of archaeological glass from Athienou-Malloura, Cyprus. J Archaeol Sci Reports 2019;23:700-13. [DOI:10.1016/j.jasrep.2018.08.011]
5. Freestone IC, Degryse P, Lankton J, Gratuze B, Schneider J. HIMT, glass composition and commodity branding in the primary glass industry. Things That Travel Mediterr Glas First Millenn Ce (Eds Rosenow D, Ed 2018:159-90. [DOI:10.2307/j.ctt21c4tb3.14]
6. Walton MS, Shortland A, Kirk S, Degryse P. Evidence for the trade of Mesopotamian and Egyptian glass to Mycenaean Greece. J Archaeol Sci 2009;36:1496-503. [DOI:10.1016/j.jas.2009.02.012]
7. Koleini F, Prinsloo LC, Biemond WM, Colomban P, Ngo A-T, Boeyens JCA, et al. Towards refining the classification of glass trade beads imported into Southern Africa from the 8th to the 16th century AD. J Cult Herit 2016;19:435-44. [DOI:10.1016/j.culher.2015.11.003]
8. Freestone IC. Glass production in Late Antiquity and the Early Islamic period: a geochemical perspective. Geol Soc London, Spec Publ 2006;257:201-16. [DOI:10.1144/GSL.SP.2006.257.01.16]
9. Rehren T, Freestone IC. Ancient glass: from kaleidoscope to crystal ball. J Archaeol Sci 2015;56:233-41. [DOI:10.1016/j.jas.2015.02.021]
10. Henderson J. Ancient glass: an interdisciplinary exploration. Cambridge University Press; 2013. [DOI:10.1017/CBO9781139021883]
11. Cui J, Wu X, Huang B. Chemical and lead isotope analysis of some lead-barium glass wares from the Warring States Period, unearthed from Chu tombs in Changde City, Hunan Province, China. J Archaeol Sci 2011;38:1671-9. [DOI:10.1016/j.jas.2011.02.034]
12. Mirti P, Pace M, Malandrino M, Ponzi MN. Sasanian glass from Veh Ardašīr: new evidences by ICP-MS analysis. J Archaeol Sci 2009;36:1061-9. [DOI:10.1016/j.jas.2008.12.008]
13. Mirti P, Pace M, Negro Ponzi M, Aceto M. ICP-MS Analysis of Glass Fragments of Parthian And Sasanian Epoch from Seleucia and Veh Ardaš?R (Central Iraq)*. Archaeometry 2008;50:429-50. doi: https://doi.org/10.1111/j.1475-4754.2007.00344.x [DOI:10.1111/j.1475-4754.2007.00344.x.]
14. Sayre E V, Smith RW. Compositional categories of ancient glass. Science (80- ) 1961;133:1824-6. doi: https://doi.org/10.1126/science.133.3467.1824 [DOI:10.1126/science.133.3467.1824.] [PMID]
15. Agha-Aligol D, Jafarzadeh M, Moradi M. Micro-PIXE: A Powerful Technique in Measurement and Determination of Raw Materials of Glass Artifacts of Parthian Period From Shaur(Susa). J Res Archaeom 2018;4:47-65. [آقا علی‏گل داود، جعفری زاده مسلم، مرادی محمود. میکروپیکسی: روشی توانمند در بررسی و تعیین مواد اولیه مصنوعات شیشه‏ای دوره اشکانی کاخ شائور (شوش)، پژوهه باستان‌سنجی،1397، 4(1)،47-65 ] [DOI:10.29252/jra.4.1.47]
16. Bagherpour Kashani N. Studies of ancient depositional practices and related jewellery finds, based on the discoveries at Veshnaveh 2015.
17. Bahadori R, Agha-Aligol D. Labratorial Studies on the Blue and Green Beads Used in the Prehistoric Ornaments of National Museum of Iran. Pazhoheshha-Ye Bastan Shenasi Iran 2018;8:45-62. [بهادری رؤیا، آقا علی گل داود. مطالعات آزمایشگاهی تعدادی از مهره‌های آبی و سبز به‌کاررفته در زیورآلات پیش‌ازتاریخ موزه ملی ایران، پژوهش‌های باستان‌شناسی ایران،1397، 8: ،45-62]
18. Rahbar M. Report of first season Archaeological Excavation in Saleh Davoud(Khuzistan). Tehran: 2000. [رهبر مهدی. فصل اول کاوش‌های باستان‌شناسی صالح داود، معاونت پژوهشی پژوهشکده باستان‌شناسی، سازمان میراث فرهنگی، 1378]
19. Rahbar M. Report of second season Archaeological Excavation in Saleh Davoud(Khuzistan). 2004. [رهبر مهدی. فصل دوم کاوش‌های باستان‌شناسی صالح داود، معاونت پژوهشی پژوهشکده باستان‌شناسی، سازمان میراث فرهنگی،1382]
20. Jafarizadeh M. Study and Interpretation of Parthian Art and Glass Industry(Case Study: Archaeological Data of Khuzestan Plain). Tarbiat Modares University, 2018. [جعفری‏زاده مسلم. مطالعه و تحلیل هنر و صنعت شیشه‌گری دوره اشکانی (مطالعه موردی: داده‌های باستان‌شناختی محوطه‌های باستانی دشت خوزستان)، پایان‌نامه دکتری، باستان‌شناسی دوره تاریخی،1397]
21. Adams F, Barbante C. Particle-Based Imaging Techniques. Compr. Anal. Chem., vol. 69, Elsevier; 2015, p. 315-37. [DOI:10.1016/B978-0-444-63439-9.00008-6]
22. Johansson SAE, Campbell JL. PIXE: A novel technique for elemental analysis 1988. [DOI:10.1016/S0003-2670(00)84112-4]
23. Verma HR. Rutherford Backscattering Spectroscopy. At Nucl Anal Methods XRF, Mössbauer, XPS, NAA B63Ion-Beam Spectrosc Tech 2007:91-141.
24. Vicenzi EP, Eggins S, Logan A, Wysoczanski R. Microbeam characterization of corning archeological reference glasses: new additions to the smithsonian microbeam standard collection. J Res Natl Inst Stand Technol 2002;107:719. [DOI:10.6028/jres.107.058] [PMID] [PMCID]
25. Jackson CM, Paynter S, Nenna M-D, Degryse P. Glassmaking using natron from el-Barnugi (Egypt); Pliny and the Roman glass industry. Archaeol Anthropol Sci 2018;10:1179-91. [DOI:10.1007/s12520-016-0447-4]
26. Campbell JL, Boyd NI, Grassi N, Bonnick P, Maxwell JA. The Guelph PIXE software package IV. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 2010;268:3356-63. [DOI:10.1016/j.nimb.2010.07.012]
27. Fiorentino S, Chinni T, Cirelli E, Arletti R, Conte S, Vandini M. Considering the effects of the Byzantine-Islamic transition: Umayyad glass tesserae and vessels from the qasr of Khirbet al-Mafjar (Jericho, Palestine). Archaeol Anthropol Sci 2018;10:223-45. [DOI:10.1007/s12520-017-0495-4]
28. Liu S, Li Q, Gan F, Zhang P. Characterization of some ancient glass vessels fragments found in Xinjiang, China, using a portable energy dispersive XRF spectrometer. X‐Ray Spectrom 2011;40:364-75. [DOI:10.1002/xrs.1351]
29. Emami SMA, Pakgohar S. Glass Wires from Chogha Zanbil: Preliminary Glass Making Evidence in Iran in the Early 2rd Millennium BC 2017. [DOI:10.29252/jra.3.1.1]
30. Paynter S. Analyses of colourless Roman glass from Binchester, County Durham. J Archaeol Sci 2006;33:1037-57. doi: https://doi.org/10.1016/j.jas.2005.10.024 [DOI:10.1016/j.jas.2005.10.024.]
31. Topić N, Radović IB, Fazinić S, Šmit Ž, Sijarić M, Gudelj L, et al. Compositional analysis of Late Medieval glass from the western Balkan and eastern Adriatic hinterland. Archaeol Anthropol Sci 2019;11:2347-65. https://doi.org/10.1007/s12520-019-00805-8 [DOI:10.1007/s12520-018-0712-9]
32. Whitehouse D. 'Things that travelled': the surprising case of raw glass. Early Mediev Eur 2003;12:301-5. [DOI:10.1111/j.0963-9462.2004.00135.x]
33. Then-Obłuska J, Dussubieux L. Glass bead trade in the Early Roman and Mamluk Quseir ports-A view from the Oriental Institute Museum assemblage. Archaeol Res Asia 2016;6:81-103. [DOI:10.1016/j.ara.2016.02.008]
34. Boulogne S, Henderson J. indian Glass in the Middle east? Medieval and Ottoman Glass Bangles from central Jordan. J Glass Stud 2009:53-75.
35. Carter A, Dussubieux L, Polkinghorne M, Pottier C. Glass artifacts at Angkor: evidence for exchange. Archaeol Anthropol Sci 2019;11:1013-27. [DOI:10.1007/s12520-017-0586-2]
36. Freestone IC, Ponting M, Hughes MJ. The origins of Byzantine glass from Maroni Petrera, Cyprus. Archaeometry 2002;44:257-72. doi:10.1111/1475-4754.t01-1-00058. [DOI:10.1111/1475-4754.t01-1-00058]
37. Mirti P, Casoli A, Appolonia L. Scientific Analysis of Roman Glass from Augusta Praetoria. Archaeometry 1993;35:225-40. doi:10.1111/j.1475-4754.1993.tb01037.x. [DOI:10.1111/j.1475-4754.1993.tb01037.x]
38. Phelps M, Freestone IC, Gorin-Rosen Y, Gratuze B. Natron glass production and supply in the late antique and early medieval Near East: The effect of the Byzantine-Islamic transition. J Archaeol Sci 2016;75:57-71. [DOI:10.1016/j.jas.2016.08.006]
39. Welter N, Schüssler U, Kiefer W. Characterisation of inorganic pigments in ancient glass beads by means of Raman microspectroscopy, microprobe analysis and X‐ray diffractometry. J Raman Spectrosc An Int J Orig Work All Asp Raman Spectrosc Incl High Order Process Also Brillouin Rayleigh Scatt 2007;38:113-21. [DOI:10.1002/jrs.1637]
40. Clark RJH. Pigment identification by spectroscopic means: an arts/science interface. Comptes Rendus Chim 2002;5:7-20. [DOI:10.1016/S1631-0748(02)01341-3]
41. Eastaugh N. Pigment Compendium: A Dictionary and Optical Microscopy of Historic 2008. [DOI:10.4324/9780080473765]
42. Schibille N, Neri E, Ebanista C, Ammar MR, Bisconti F. Something old, something new: the late antique mosaics from the catacomb of San Gennaro (Naples). J Archaeol Sci Reports 2018;20:411-22. [DOI:10.1016/j.jasrep.2018.05.024]
43. Drünert F, Blanz M, Pollok K, Pan Z, Wondraczek L, Möncke D. Copper-based opaque red glasses-Understanding the colouring mechanism of copper nanoparticles in archaeological glass samples. Opt Mater (Amst) 2018;76:375-81. [DOI:10.1016/j.optmat.2017.12.054]
44. Dussubieux L, Karklins K. Glass bead production in Europe during the 17th century: Elemental analysis of glass material found in London and Amsterdam. J Archaeol Sci Reports 2016;5:574-89. [DOI:10.1016/j.jasrep.2015.12.018]
45. Garcia-Heras M, Rincón JM, Jimeno A, Villegas MA. Pre-Roman coloured glass beads from the Iberian Peninsula: a chemico-physical characterisation study. J Archaeol Sci 2005;32:727-38. doi: https://doi.org/10.1016/j.jas.2004.12.007 [DOI:10.1016/j.jas.2004.12.007.]
46. Gonzalez V, Wallez G, Calligaro T, Cotte M, De Nolf W, Eveno M, et al. Synchrotron-based high angle resolution and high lateral resolution X-ray diffraction: revealing lead white pigment qualities in old masters paintings. Anal Chem 2017;89:13203-11. [DOI:10.1021/acs.analchem.7b02949] [PMID]
47. Gonzalez V, Calligaro T, Pichon L, Wallez G, Mottin B. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF. Appl Phys A 2015;121:849-56. [DOI:10.1007/s00339-015-9365-z]
48. Weber G, Strivay D, Martinot L, Garnir H-P. Use of PIXE-PIGE under variable incident angle for ancient glass corrosion measurements. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 2002;189:350-7. [DOI:10.1016/S0168-583X(01)01085-0]
49. Mayer M. SIMNRA User's Guide (IPP 9/113 1997). Google Sch M Mayer, Http//Www Rzg Mpg 1997. [DOI:10.1016/S0016-5085(97)70202-6]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb