Archaeological exploration of Tappeh Hissar Damghan using forward and inverse modeling of Ground-Penetrating Radar data - Journal of Research on Archaeometry
------------------------------------------ ---------------------------------------
year 2, Issue 1 (2016)                   JRA 2016, 2(1): 1-16 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadpour A, Kamkar Rouhani A, Ahmadi R. Archaeological exploration of Tappeh Hissar, Damghan using forward and inverse modeling of Ground-Penetrating Radar data. JRA 2016; 2 (1) :1-16
1- Shahrood University tecnoalogy ,
2- Shahrood University Tecnoalogy
3- Arak University Tecnoalogy
Abstract:   (7732 Views)

Ground penetrating radar (GPR) method is a non-destructive geophysical method that is used to detect subsurface heterogeneities and also recognition of various shallow targets. In present research, forward and inverse modeling of GPR data applied for archeological study has been made. The study area is Tappeh Hissar, Damghan, in which GPR data along several survey lines have been acquired using 250 MHz shielded antenna for archeological investigations. To achieve the goal, the real radargram of a survey line in the area has been obtained after applying different processing operations containing signal saturation correction and applying band-pass, auto-gain control and background removal filters on the GPR data using Reflexw software. Then, the synthetic radargram corresponding to the real radargram has been simulated using finite-different time domain (FDTD) method. Afterward inversion method with solution of an optimization problem was employed for validation of interpretation of GPR radargram in order to detect buried targets. The results of this research, that are based on the agreement between the radargram obtained from the real GPR data and the synthetic radargram corresponding to the real radargram, confirm the correctness of the interpretation of subsurface archeological investigations in the area, and thus, indicate the capability of application of GPR method for  archeological exploration.

Full-Text [PDF 6719 kb]   (4581 Downloads)    
Technical Note: Original Research | Subject: Archaeometry
Received: 2016/04/18 | Accepted: 2016/07/28 | Published: 2016/09/22 | ePublished: 2016/09/22

Refrences [RIS 12 KB]  (98 Download)
1. Alaamer, H.A. (2015). Modeling of GPR Profile: An Example from Archaeological Site in Basrah, Iraq. Basic Sciences and Applied Research, 1(3): 1-10.
2. Al-Nuaimy, W., Huang, Y., Nakhkash, M., Fang, M. T. C., Nguyen, V. T., & Eriksen, A. (2000). Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition. Journal of applied Geophysics, 43(2), 157-165. [DOI:10.1016/S0926-9851(99)00055-5]
3. Annan, A. P. (2001). Ground Penetrating Radar Workshop Notes: Sensors and Software.
4. Arciniega-Ceballos, A., Hernandez-Quintero, E., Cabral-Cano, E., Morett-Alatorre, L., Diaz-Molina, O., Soler-Arechalde, A., & Chavez-Segura, R. (2009). Shallow geophysical survey at the archaeological site of San Miguel Tocuila, Basin of Mexico. Journal of Archaeological Science, 36(6), 1199-1205. [DOI:10.1016/j.jas.2009.01.025]
5. Arısoy, M. Ö., Koçak, Ö., Büyüksaraç, A., & Bilim, F. (2007). Images of buried graves in Bayat, Afyon (Turkey) from high-resolution magnetic data and their comparison with preliminary excavations. Journal of archaeological science, 34(9), 1473-1484. [DOI:10.1016/j.jas.2006.11.005]
6. Aydin, A., Baykan, O., and Akyol, E. (2014). Detecting ancient water distribution system using GPR in Patara, Antalya, Turkey. Multidisciplinary Engineering Science and Technology (JMEST), 1(5): 32-38.
7. Bergmann, T., Robertsson, J. O., & Holliger, K. (1998). Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics, 63(3), 856-867. [DOI:10.1190/1.1444396]
8. Bourgeois, J. M., & Smith, G. S. (1996). A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment. IEEE Transactions on Geoscience and Remote Sensing, 34(1), 36-44. [DOI:10.1109/36.481890]
9. Brandt, O., Langley, K., Kohler, J., & Hamran, S. E. (2007). Detection of buried ice and sediment layers in permafrost using multi-frequency Ground Penetrating Radar: A case examination on Svalbard. Remote Sensing of Environment, 111(2), 212-227. [DOI:10.1016/j.rse.2007.03.025]
10. Christie, M., Tsoflias, G. P., Stockli, D. F., & Black, R. (2009). Assessing fault displacement and off-fault deformation in an extensional tectonic setting using 3-D ground-penetrating radar imaging. Journal of applied geophysics, 68(1), 9-16. [DOI:10.1016/j.jappgeo.2008.10.013]
11. Conyers L.B., Goodman, D. (2004). Ground-Penetrating Radar, An Introduction for Archaeologists. Altaamira press. USA. pp. 232.
12. Daniels, D. J. (2004). Ground Penetrating Radar The Institution of Electrical Engineers. London, UK. [DOI:10.1049/PBRA015E]
13. Davis, J. L., & Annan, A. P. (1989). Ground‐Penetrating Radar for High‐Resolution Mapping of Soil and Rock Stratigraphy1. Geophysical prospecting, 37(5), 531-551. [DOI:10.1111/j.1365-2478.1989.tb02221.x]
14. Denis, A., Huneau, F., Hœrlé, S., & Salomon, A. (2009). GPR data processing for fractures and flakes detection in sandstone. Journal of Applied Geophysics, 68(2), 282-288. [DOI:10.1016/j.jappgeo.2009.01.003]
15. Fischer, P. M., Follin, S. G., & Ulriksen, P. (1980). Subsurface Interface Radar Survey at Hala Sultan Tekke, Cyprus. Swedish Annual Studies in Mediterranean Archaeology, 63, 48-64.
16. Giannopoulos, A. (2005). Modelling ground penetrating radar by GprMax. Construction and building materials, 19(10), 755-762. [DOI:10.1016/j.conbuildmat.2005.06.007]
17. Gondet, S., Dhemaied, A., Mohammadkhani, K., & Rejiba, F. (2009). Geophysical investigations in the vicinity of the Persepolis Royal Terrace (Fars province, Iran). ArcheoSciences. Revue d\'archéométrie, (33 (suppl.)), 69-72. [DOI:10.4000/archeosciences.1307]
18. Goodman, D. (1994). Ground-penetrating radar simulation in engineering and archaeology. Geophysics, 59(2), 224-232. [DOI:10.1190/1.1443584]
19. Goodman, D., Piro, S., Schneider, K., Nishimura, Y., Hongo, H., Higashi, N., ... & Damiata, B. (2009). GPR Archaeometry in GPR Theory and Applications, ed. H. Jol.
20. Gracia, V. P., Canas, J. A., Pujades, L. G., Clapés, J., Caselles, O., Garcı́a, F., & Osorio, R. (2000). GPR survey to confirm the location of ancient structures under the Valencian Cathedral (Spain). Journal of Applied Geophysics, 43(2), 167-174. [DOI:10.1016/S0926-9851(99)00056-7]
21. Grandjean, G., Gourry, J. C., & Bitri, A. (2000). Evaluation of GPR techniques for civil-engineering applications: study on a test site. Journal of Applied Geophysics, 45(3), 141-156. [DOI:10.1016/S0926-9851(00)00021-5]
22. Irving, J., & Knight, R. (2006). Numerical modeling of ground-penetrating radar in 2-D using MATLAB. Computers & Geosciences, 32(9), 1247-1258. [DOI:10.1016/j.cageo.2005.11.006]
23. Hagg, W., Mayer, C., Lambrecht, A., Kriegel, D., & Azizov, E. (2013). Glacier changes in the big Naryn basin, central Tian Shan. Global and planetary change, 110, 40-50. [DOI:10.1016/j.gloplacha.2012.07.010]
24. Jol, H.M. (2009). Ground Penitrating Radar: Theory and Applications. Oxford: Elsevier Science, 508 pages.
25. Knight, R. (2001). Ground penetrating radar for environmental applications. Annual Review of Earth and Planetary Sciences, 29(1), 229-255. [DOI:10.1146/]
26. Lin, M. C., Kang, Y. M., Lee, K. F., & Hsu, H. C. (2009). A Study on the Technologies for Detecting Underground Water Level and Processing Image. International Journal of Applied Science and Engineering, 7(1), 61-68.
27. Martino, L., Bonomo, N., Lascano, E., Osella, A., & Ratto, N. (2006). Electrical and GPR prospecting at Palo Blanco archaeological site, northwestern Argentina. Geophysics, 71(6), B193-B199. [DOI:10.1190/1.2345193]
28. Mu ̈ller, K. (‌2005). ‌Modelling of GPR Wave Propagation and Scattering in Inhomogeneous Media. phD.‌ Thesis‌, Master Thesis in Geosciences Petroleum Geology and Geophysics Department of Geosciences University of Oslo.
29. Neal, A. (2004). Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science reviews, 66(3), 261-330. [DOI:10.1016/j.earscirev.2004.01.004]
30. Negri, S., Leucci, G., & Mazzone, F. (2008). High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface. Journal of Applied Geophysics, 65(3), 111-120. [DOI:10.1016/j.jappgeo.2008.06.004]
31. Nobes, D. C. (1999). Geophysical surveys of burial sites: a case study of the Oaro urupa. Geophysics, 64(2), 357-367. [DOI:10.1190/1.1444540]
32. Olhoeft, G.R. (2001). GRORADARTM, Acquisition, Processing, Modeling and Display of Dispersive Ground Penetrating Radar Data. version 2001.01.
33. Parasnis, D. S. (1997). Principles of applied geophysics. 5th edition, Chapman and Hall, Springer Netherlands ‌Science - 429 pages.
34. Pauselli, C., Federico, C., Frigeri, A., Orosei, R., Barchi, M. R., & Basile, G. (2010). Ground penetrating radar investigations to study active faults in the Norcia Basin (central Italy). Journal of applied geophysics, 72(1), 39-45. [DOI:10.1016/j.jappgeo.2010.06.009]
35. Roberts, R. L., & Daniels, J. J. (1997). Modeling near-field GPR in three dimensions using the FDTD method. Geophysics, 62(4), 1114-1126. [DOI:10.1190/1.1444212]
36. Radzevicius, S. J., Guy, E. D., & Daniels, J. J. (2000). Pitfalls in GPR data interpretation: differentiating stratigraphy and buried objects from periodic antenna and target effects. Geophysical Research Letters, 27(20), 3393-3396. [DOI:10.1029/2000GL008512]
37. Reynolds, J.M. )1997(. An introduction to applied and environmental geophysics, John Wiley & Sons Ltd. UK.
38. Hubbard, S. S., & Rubin, Y. (2005). Introduction to hydrogeophysics. In Hydrogeophysics (pp. 3-21). Springer Netherlands. [DOI:10.1007/1-4020-3102-5_1]
39. Shafri, H. Z. M., Abdullah, R. R., Roslee, M., & Muniandy, R. (2008, July). Optimization of ground penetrating radar (GPR) mixture model in road pavement density data analysis. In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium (Vol. 3, pp. III-1326). IEEE.
40. Sambuelli, L., Calzoni, C., Stocco, S., & Rege, R. (2009, November). Geophysical measurements on the occasion of the moving of an ancient Egyptian sculpture. In Proceedings of the 28th GNGTS meeting, Trieste (pp. 16-19).
41. Singh, S. K., Rathore, B. P., Bahuguna, I. M., & Ramnathan, A. L. (2012). Estimation of glacier ice thickness using Ground Penetrating Radar in the Himalayan region. Current Science(Bangalore), 103(1), 68-73.
42. Solla, M., Lorenzo, H., & Riveiro, B. (2011). Evaluation of ancient structures by GPR: The arch bridges of Galicia (Spain). Scientific Research and Essays, 6(8), 1877-1884.
43. Sheets, P. D., Loker, W. M., Spetzler, H. A., & Ware, R. W. (1985). Geophysical exploration for ancient Maya housing at Ceren, El Salvador. National Geographic Research Reports, 20, 645-656.
44. Shyeh, S. K., Nordiana, M. M., Anuar, S., Saad, R., & Saidin, M. (2014). Archaeological Evidences Detection by using GPR Method: SB2K Site. EJGE, Bund. Y, 19: 8569-8578.
45. Teixeira, F. L., Chew, W. C., Straka, M., Oristaglio, M. L., & Wang, T. (1998). Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils. IEEE Transactions on Geoscience and remote sensing, 36(6), 1928-1937. [DOI:10.1109/36.729364]
46. Van Dam, R. L., & Schlager, W. (2000). Identifying causes of ground‐penetrating radar reflections using time‐domain reflectometry and sedimentological analyses. Sedimentology, 47(2), 435-449. [DOI:10.1046/j.1365-3091.2000.00304.x]
47. Vickers, R., Dolphin, L. T., & Johnson, D. (1976). Archaeological investigations at Chaco Canyon using a subsurface radar. Remote Sensing Experiments in Cultural Resource Studies at Chaco Canyon. Albuquerque, New Mexico: USDI-NPS and the University of New Mexico, 81-101.
48. Weedon, W. H., & Rappaport, C. M. (1997). A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media. IEEE Transactions on Antennas and Propagation, 45(3), 401-410. [DOI:10.1109/8.558655]
49. Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell\'s equations in isotropic media. IEEE Trans. Antennas Propag, 14(3), 302-307. [DOI:10.1109/TAP.1966.1138693]
50. Young, R. A., Deng, Z., & Sun, J. (1995). Interactive processing of GPR data. The Leading Edge, 14(4), 275-280. [DOI:10.1190/1.1437130]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb