Biological Agents Associated with Brick Biodeterioration in Gonbad-e Qābus Tower UNESCO World Heritage Site - Journal of Research on Archaeometry
------------------------------------------ ---------------------------------------
year 8, Issue 2 (2022)                   JRA 2022, 8(2): 65-80 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zabihi M, Sohrabi M, Nortaghani A, Talebian M H. Biological Agents Associated with Brick Biodeterioration in Gonbad-e Qābus Tower UNESCO World Heritage Site. JRA 2022; 8 (2) :65-80
URL: http://jra-tabriziau.ir/article-1-347-en.html
1- Iranian Research Organization for Scientific and Technology, Tehran, Iran
2- Iranian Research Organization for Scientific and Technology, Tehran, Iran , sohrabi@irost.org
3- Department of Architecture, Faculty of Engineering, Golestan University, Gorgan, Iran
4- Department of Architecture, Faculty of Architecture, University of Tehran, Tehran, Iran
Abstract:   (1472 Views)
 The World Heritage of Gonbad-e Qābus tower, as one of the architectural masterpieces of the Islamic period of Iran, has been exposed to various biological growths and invasions in the open air. This study aims to identify the type of biological agents living on the ancient brick surfaces in Gonbad-e Qābus tower in Gonbad-e kāvus city in Golestan province. In this research, using field observations, in-site macroscopic observations, microscopic methods, and library studies, biological factors were identified and influenced on the brick surface of the Qaboos dome in three parts: foundation, body, and dome. Based on this, the biodeterioration factors were divided into two sampling groups. The first group includes macro-organisms, which was done to prevent damage based on the identification method based on documentation and camera photography. The second group is the sampling of microorganisms such as bacteria and fungi, microalgae and cyanobacteria, lichens, which are sampled from the brick surface with sterile tweezers and then transferred into the microtube and by the method morphology, culture and microscopy were identified. In general, nine groups of organisms responsible for biodeterioration were identified in this study, among their main groups are bacteria, cyanobacteria and algae, fungi, lichens, mosses and plants, insects and small animals. Macro-organisms increase and decrease with changes in humidity and are therefore effective in the mechanical destruction of substrate components. Among the macro-organisms, plants and mosses were known to be the most important enemies of the existing brick substrate of Gonbad-e Qābus tower. Microorganisms are able to form clones and biofilms on the surface of the brick substrate. They secrete acids that break down the minerals that make up the brick substrate and thus play an important role in the biodeterioration of the building. In general, the bricks of the exterior walls of the building are exposed to the attack of various biological and non-living factors and generally show less resistance to the activities of wear factors. Humidity, temperature and light and urban dust pollution are potential factors in increasing the factors involved in biodeterioration can be discussed in future researches
Full-Text [PDF 2749 kb]   (857 Downloads)    
Technical Note: Original Research | Subject: Conservation Science
Received: 2022/10/23 | Accepted: 2023/03/2 | Published: 2023/03/13 | ePublished: 2023/03/13

References
1. Sterflinger K, Piñar G. Microbial deterioration of cultural heritage and works of art - Tilting at windmills? Appl Microbiol Biotechnol 2013;97:9637-46. https://doi.org/10.1007/s00253-013-5283-1 [DOI:10.1007/s00253-013-5283-1.]
2. Warscheid T, Braams J. Biodeterioration of stone: A review. vol. 46. 2000. https://doi.org/10.1016/S0964-8305(00)00109-8 [DOI:10.1016/S0964-8305(00)00109-8.]
3. Griffin PS, Indictor N, Koestler RJ. The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment. vol. 28. 1991. https://doi.org/10.1016/0265-3036(91)90042-P [DOI:10.1016/0265-3036(91)90042-P.]
4. Saiz-Jimenez C. Biodeterioration of Stone in Historic Buildings and Monuments. Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration, Springer US; 1994, p. 587-604. https://doi.org/10.1007/978-1-4757-9450-2_45 [DOI:10.1007/978-1-4757-9450-2_45.]
5. Palla F, Barresi G. Biotechnology and conservation of cultural heritage. Biotechnology and Conservation of Cultural Heritage 2017:1-100. https://doi.org/10.1007/978-3-319-46168-7 [DOI:10.1007/978-3-319-46168-7.]
6. Florian M-L. Plant Biology for Cultural Heritage: Biodeterioration and Conservation. vol. 54. 2009. https://doi.org/10.1179/sic.2009.54.3.191 [DOI:10.1179/sic.2009.54.3.191.]
7. Iranian Cultural Heritage Handicrafts and Tourism Organization. Nomination of Gonbad-e Qabus for Inscription on the World Heritage List 2011:1-360.
8. Denmark - UNESCO World Heritage Centre n.d. https://whc.unesco.org/en/statesparties/dk (accessed March 15, 2021).
9. Sarró MI, García AM, Rivalta VM, Moreno DA, Arroyo I. Biodeterioration of the Lions Fountain at the Alhambra Palace, Granada (Spain). Build Environ 2006;41:1811-20. https://doi.org/10.1016/j.buildenv.2005.07.029 [DOI:10.1016/j.buildenv.2005.07.029.]
10. Sohrabi M, Favero-Longo SE, Pérez-Ortega S, Ascaso C, Haghighat Z, Talebian MH, et al. Lichen colonization and associated deterioration processes in Pasargadae, UNESCO world heritage site, Iran. Int Biodeterior Biodegradation 2017;117:171-82. https://doi.org/10.1016/j.ibiod.2016.12.012 [DOI:10.1016/j.ibiod.2016.12.012.]
11. Sanchez-Silva M, Rosowsky D V. Biodeterioration of Construction Materials: State of the Art and Future Challenges. Journal of Materials in Civil Engineering 2008;20:352-65. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(352) [DOI:10.1061/(asce)0899-1561(2008)20:5(352).]
12. Van Balen K. Expert system for evaluation of deterioration of ancient brick masonry structures. Science of the Total Environment 1996;189-190:247-54. https://doi.org/10.1016/0048-9697(96)05215-1 [DOI:10.1016/0048-9697(96)05215-1.]
13. Ali HE, Khattab SA, Al-Mukhtar M. The effect of biodeterioration by bird droppings on the degradation of stone built. Engineering Geology for Society and Territory - Volume 8: Preservation of Cultural Heritage 2015:515-20. https://doi.org/10.1007/978-3-319-09408-3_91 [DOI:10.1007/978-3-319-09408-3_91.]
14. Otlewska A, Adamiak J, Gutarowska B. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects. vol. 61. 2014. https://doi.org/10.18388/abp.2014_1889 [DOI:10.18388/abp.2014_1889.]
15. Ascaso C, Wierzchos J, Castello R. Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms. Int Biodeterior Biodegradation 1998;42:29-38. https://doi.org/10.1016/S0964-8305(98)00043-2 [DOI:10.1016/S0964-8305(98)00043-2.]
16. Leite AMO, Mayo B, Rachid CTCC, Peixoto RS, Silva JT, Paschoalin VMF, et al. Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol 2012;31:215-21. https://doi.org/10.1016/j.fm.2012.03.011 [DOI:10.1016/j.fm.2012.03.011.]
17. Nica D, Davis JL, Kirby L, Zuo G, Roberts DJ. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. vol. 46. 2000. https://doi.org/10.1016/S0964-8305(00)00064-0 [DOI:10.1016/S0964-8305(00)00064-0.]
18. Gorbushina AA, Heyrman J, Dornieden T, Gonzalez-Delvalle M, Krumbein WE, Laiz L, et al. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene-Kreiensen, Germany). Int Biodeterior Biodegradation 2004;53:13-24. https://doi.org/10.1016/j.ibiod.2003.07.003 [DOI:10.1016/j.ibiod.2003.07.003.]
19. Bielefeldt A, Gutierrez-Padilla MaGD, Ovtchinnikov S, Silverstein J, Hernandez M. Bacterial Kinetics of Sulfur Oxidizing Bacteria and Their Biodeterioration Rates of Concrete Sewer Pipe Samples. Journal of Environmental Engineering 2010;136:731-8. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000215 [DOI:10.1061/(asce)ee.1943-7870.0000215.]
20. Gu JD, Ford TE, Berke NS, Mitchell R. Biodeterioration of concrete by the fungus Fusarium. Int Biodeterior Biodegradation 1998;41:101-9. https://doi.org/10.1016/S0964-8305(98)00034-1 [DOI:10.1016/S0964-8305(98)00034-1.]
21. Sterflinger K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol Rev 2010;24:47-55. https://doi.org/10.1016/j.fbr.2010.03.003 [DOI:10.1016/j.fbr.2010.03.003.]
22. Shirakawa MA, Beech IB, Tapper R, Cincotto MA, Gambale W. The development of a method to evaluate bioreceptivity of indoor mortar plastering to fungal growth. Int Biodeterior Biodegradation 2003;51:83-92. https://doi.org/10.1016/S0964-8305(01)00129-9 [DOI:10.1016/S0964-8305(01)00129-9.]
23. Wakefield RD, Jones MS. An introduction to stone colonizing micro-organisms and biodeterioration of building stone. Quarterly Journal of Engineering Geology 1998;31:301-13. https://doi.org/10.1144/GSL.QJEG.1998.031.P4.03 [DOI:10.1144/GSL.QJEG.1998.031.P4.03.]
24. Kovacik L. Cyanobacteria and algae as agents of biodeterioration of stone substrata of historical buildings and other cultural monuments. Proceedings of the New Millenium International Forum on Conservation of Cultural Property, Daejeon, Korea 2000:44-58.
25. Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiology (N Y) 2009;155:3476-90. https://doi.org/10.1099/mic.0.032508-0 [DOI:10.1099/mic.0.032508-0.]
26. Lisci M, Monte M, Pacini E. Lichens and higher plants on stone: A review. vol. 51. 2003. https://doi.org/10.1016/S0964-8305(02)00071-9 [DOI:10.1016/S0964-8305(02)00071-9.]
27. Allsopp C, Allsopp D. An updated survey of commercial products used to protect materials against biodeterioration. Int Biodeterior Biodegradation 2001;48:243. https://doi.org/10.1016/S0964-8305(01)00088-9 [DOI:10.1016/S0964-8305(01)00088-9.]
28. Jain KK, Mishra AK, Singh T. Biodeterioration of stone: A review of mechanisms involved. Recent Advances in Biodeterioration And 1993;1:323-54.
29. Nyuksha JP. The biodeterioration of papers and books. Recent Advances in Biodeterioration and Biodegredation: Volume 1: Biodeterioration of Cultural Heritage 1993:1-88.
30. Di Carlo E, Barresi G, Palla F. Biodeterioration. Biotechnology and Conservation of Cultural Heritage 2017:1-30. https://doi.org/10.1007/978-3-319-46168-7_1 [DOI:10.1007/978-3-319-46168-7_1.]
31. Cardamone JM. Biodeterioration of Wool by Microorganisms and Insects. ACS Symposium Series 2001;792:263-98. https://doi.org/10.1021/bk-2001-0792.ch016 [DOI:10.1021/bk-2001-0792.ch016.]
32. Viitanen H. Factors affecting the development of biodeterioration in wooden constructions. Mater Struct 1994;27:483-93. https://doi.org/10.1007/BF02473453 [DOI:10.1007/BF02473453.]
33. Saiz-Jimenez C. Biodeterioration of Stone in Historic Buildings and Monuments. Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration, Springer US; 1994, p. 587-604. https://doi.org/10.1007/978-1-4757-9450-2_45 [DOI:10.1007/978-1-4757-9450-2_45.]
34. Izzati M, Hani A, … SS-IC, 2019 undefined. Strength and water absorption properties of lightweight concrete brick. IopscienceIopOrg n.d. https://doi.org/10.1088/1757-899X/513/1/012005 [DOI:10.1088/1757-899X/513/1/012005.]
35. Wijffels T, Nijland TG. Deterioration of historic brick masonry due to combined gypsum, ettringite and thaumasite: a case of study. 2004.
36. Traversetti L, Bartoli F, Caneva G. Wind-driven rain as a bioclimatic factor affecting the biological colonization at the archaeological site of Pompeii, Italy. Int Biodeterior Biodegradation 2018;134:31-8. https://doi.org/10.1016/j.ibiod.2018.07.016 [DOI:10.1016/j.ibiod.2018.07.016.]
37. Shirzadian S, Uniyal PL. Biodeteriorative impacts on bridges over Zayand-e-Rood river (Iran): Role of mosses and their control measures. J Sci Ind Res (India) 2008;67:377-80.
38. Sterflinger K, Little B, Pinar G, Pinzari F, de los Rios A, Gu JD. Future directions and challenges in biodeterioration research on historic materials and cultural properties. Int Biodeterior Biodegradation 2018;129:10-2. https://doi.org/10.1016/j.ibiod.2017.12.007 [DOI:10.1016/j.ibiod.2017.12.007.]
39. Welton RG, Silva MR, Gaylarde C, Herrera LK, Anleo X, De Belie N, et al. Techniques applied to the study of microbial impact on building materials. Mater Struct 2005;38:883-93. https://doi.org/10.1007/BF02482255 [DOI:10.1007/bf02482255.]
40. Learner T. Modern paints. Scientific Examination of Art: Modern Techniques in Conservation and Analysis 2005:137-51. https://doi.org/10.17226/11413 [DOI:10.17226/11413.]
41. Palla F, Barresi G. Biotechnology and conservation of cultural heritage. Biotechnology and Conservation of Cultural Heritage 2017:1-100. https://doi.org/10.1007/978-3-319-46168-7 [DOI:10.1007/978-3-319-46168-7.]
42. Sohrabi M, et al. The field monitoring of influential biodeteriogenic agents on the historic rock surfaces in Persepolis-UNESCO World Heritage Site. Journal of Research on Archaeometry 2020;6:175-92. https://doi.org/10.29252/jra.6.1.175 [DOI:10.29252/jra.6.1.175.]
43. Seaward MRD, Giacobini C, Giuliani MR, Roccardi A. The role of lichens in the biodeterioration of ancient monuments with particular reference to Central Italy. Int Biodeterior Biodegradation 2001;48:202-8. https://doi.org/10.1016/S0964-8305(01)00082-8 [DOI:10.1016/S0964-8305(01)00082-8.]
44. Gazzano C, Favero-Longo SE, Matteucci E, Roccardi A, Piervittori R. Index of Lichen Potential Biodeteriogenic Activity (LPBA): A tentative tool to evaluate the lichen impact on stonework. Int Biodeterior Biodegradation 2009;63:836-43. https://doi.org/10.1016/j.ibiod.2009.05.006 [DOI:10.1016/j.ibiod.2009.05.006.]
45. Seaward MRD. Lichens as agents of biodeterioration. Recent Advances in Lichenology: Modern Methods and Approaches in Biomonitoring and Bioprospection, Volume 1, Springer India; 2015, p. 189-212. https://doi.org/10.1007/978-81-322-2181-4_9 [DOI:10.1007/978-81-322-2181-4_9.]
46. Perito B, Cavalieri D. Innovative metagenomic approaches for detection of microbial communities involved in biodeteriorattion of cultural heritage. IOP Conf Ser Mater Sci Eng, vol. 364, Institute of Physics Publishing; 2018. https://doi.org/10.1088/1757-899X/364/1/012074 [DOI:10.1088/1757-899X/364/1/012074.]
47. Tonon C, Favero-Longo SE, Matteucci E, Piervittori R, Croveri P, Appolonia L, et al. Microenvironmental features drive the distribution of lichens in the House of the Ancient Hunt, Pompeii, Italy. vol. 136. 2019. https://doi.org/10.1016/j.ibiod.2018.10.012 [DOI:10.1016/j.ibiod.2018.10.012.]
48. Unković N, Ljaljević Grbić M, Subakov-Simić G, Stupar M, Vukojević J, Jelikić A, et al. Biodeteriogenic and toxigenic agents on 17th century mural paintings and façade of the old church of the Holy Ascension (Veliki Krćimir, Serbia). Indoor and Built Environment 2016;25:826-37. https://doi.org/10.1177/1420326X15587178 [DOI:10.1177/1420326X15587178.]
49. Lan W, Li H, Wang WD, Katayama Y, Gu JD. Microbial community analysis of fresh and old microbial biofilms on Bayon Temple sandstone of Angkor Thom, Cambodia. Microb Ecol 2010;60:105-15. https://doi.org/10.1007/s00248-010-9707-5 [DOI:10.1007/s00248-010-9707-5.]
50. Capodicasa S, Fedi S, Porcelli AM, Zannoni D. The microbial community dwelling on a biodeteriorated 16th century painting. Int Biodeterior Biodegradation 2010;64:727-33. https://doi.org/10.1016/j.ibiod.2010.08.006 [DOI:10.1016/j.ibiod.2010.08.006.]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb