An Overview of the Application of Plasma Technology in the Protection of Cultural and Historical Objects - Journal of Research on Archaeometry
year 4, Issue 1 (2018)                   JRA 2018, 4(1): 81-94 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Madani F S, Hadian Dehkordi M. An Overview of the Application of Plasma Technology in the Protection of Cultural and Historical Objects. JRA. 2018; 4 (1) :81-94
1- Research Institute for Cultural Heritage and Tourism ,
2- Research Institute for Cultural Heritage and Tourism
Abstract:   (116 Views)
Nowadays, over time and increasing the awareness of the destructive effects of the use of chemical and toxic substances on the objects, the environment and users, the replacement or, minimum use of these harmful materials in the treatment and protection of valuable and rare objects is a priority. So throughout the world, researchers are seeking to develop and use safe and standard methods in this area. One of these methods is the plasma technology. Plasma can be defined as the fourth state of matter. Giving energy to a gas will induce the ionization of some of its molecules and atoms. The plasma contains therefore, besides neutral molecules, positively and negatively charged particles, although its overall charge is neutral. Cold plasma due to features such as low temperature and high energy, in addition to a wide range of applications in various fields, since 1979, has attracted the attention of specialists in conservation and restoration of cultural and historical objects. Cold plasma in disinfection and cleaning treatments of works has been examined as a non-toxic and non-invasive alternative in the field of cultural heritage. Different methodologies were developed in time using mechanical methods, solvents and, more recently, laser, to cleaning of architectural surfaces, and in a more recent time, atmospheric plasma began to be tested for such application. A positive feature of plasma is the fact that is contactless: it does not interfere mechanically with the surface being treated, and also with soft chemical action, the process of cleaning only limited to the first layers of the surface. Hence this method can prevent the adverse effects of solvent and /or imprisonment and lateral harmful products on the pores and porous surface, which is often present in common cleaning methods. In other words this method could be a good alternative for abrasion methods, that cannot remove the dirt from the pores and often lead to the damaging of the original surface, or for chemical methods, which solvents can transport undesired materials (dirt or old coatings) deeper inside through pores, cavities or cracks. Plasma might substitute or be used in combination with other techniques, particularly for delicate objects where original material might be endangered by a mechanical or wet cleaning method. In many cases the plasma alone is not as efficient as traditional methods. For instance, in case of removal of graffiti, a combination of plasma with traditional cleaning methods showed surprisingly good results or in the case of removal of oil paint from wall paintings, a pre-treatment with plasma can improve the removal with traditional solvents. The application of innovative cleaning technology on cultural properties demands sufficient knowledge concerning the cleaning process itself and the long-term behavior of an object after cleaning, because they are often unique and irreplaceable. Furthermore, the experiences carried out in various museums and research centers mentioned in this paper showed that cold plasma is appropriate methods to remove corrosion curst on metals particularly tarnished silver. Decontamination of wood and the objects based on cellulose like paper and cotton as well as protein materials (leather, wool) is another application of cold plasma presented in the paper.
Full-Text [PDF 1123 kb]   (63 Downloads)    
Technical Note: Review Articles | Subject: Conservation Science
Received: 2018/04/16 | Accepted: 2018/06/25 | Published: 2018/07/1 | ePublished: 2018/07/1

1. Hoffman BT. Art and cultural heritage: law, policy and practice. Cambridge University Press; 2006.
2. Radkova L, Fojtikova P, Kozakova Z, Krcma F, Sazavska V, Kujawa A. Sample Temperature During Corrosion Removal by Low Pressure Low-Temperature Hydrogen RF Plasma. Rom Rep Phys 2015;67:586–99.
3. Buzatu OL, Goras BT, Goras L, Ioanid EG. Evaluation of the Plasma cleaned surface of a Heritage wooden painting using LQA Methods. Acta Tech Napocensis 2012;53:9.
4. Daniels VD, Holland L, Pascoe MW. Gas plasma reactions for the conservation of antiquities. Stud Conserv 1979;24:85–92.
5. Scheider JP, Vepřek S. Application of low-pressure hydrogen plasma to the conservation of ancient iron artifacts. Stud Conserv 1986;31:29–37. [DOI:10.1179/sic.1986.31.1.29]
6. Vepřek S, Eckmann C, Elmer JT. Recent progress in the restoration of archeological metallic artifacts by means of low-pressure plasma treatment. Plasma Chem Plasma Process 1988;8:445–66. [DOI:10.1007/BF01016059]
7. Sjøgren A, Buchwald VF. Hydrogen plasma reactions in a DC mode for the conservation of iron meteorites and antiquities. Stud Conserv 1991;36:161–71.
8. Schmidt-Ott K, Boissonnas L. Low-pressure hydrogen plasma to the conservation of ancient iron artefacts. Stud Conserv 2002;31:29–37.
9. Vohrer U, Trick I, Bernhardt J, Oehr C, Brunner H. Plasma treatment—an increasing technology for paper restoration? Surf Coatings Technol 2001;142:1069–73. [DOI:10.1016/S0257-8972(01)01280-4]
10. Ioanid EG, Ioanid A, Rusu DE, Popescu C-M, Stoica I. Surface changes upon high-frequency plasma treatment of heritage photographs. J Cult Herit 2011;12:399–407. [DOI:10.1016/j.culher.2011.04.002]
11. Rutledge SK, Banks BA, Forkapa M, Stueber T, Sechkar E, Malinowski K. Atomic oxygen treatment as a method of recovering smoke-damaged paintings. J Am Inst Conserv 2000;39:65–74. [DOI:10.2307/3179964]
12. Totolin MI, Ioanid GE, Neamtu I. Plasma chemistry and the environment. Environ Eng Manag J 2009;8. [DOI:10.30638/eemj.2009.219]
13. Xaplanteris CL, Filippaki E. Chaotic Behavior of Plasma Surface Interaction: A Table of Plasma Treatment Parameters Useful to the Restoration of Metallic Archaeological Objects. Chaotic Syst. Theory Appl., World Scientific; 2010, p. 377–84.
14. Plasma technology, Diener electronic GmbH+Co.KG. Germany 2007.
15. Plasma Technology, Process Diversity, Sustainability. 2001.
16. Margot J. la physique des plasmas; La Physique au Canada. vol. 4. 2012: 68(4):183
17. Raimbault J-L. Introduction à la Physique des Plasmas. Faculté des Sciences d’Orsay, Paris-Sud-XI, Laboratoire de Physique des Plasmas. 2012-2013.
18. Rausher H, Perucca M, Buyle G. Plasma Technology for hyperfunctional surfaces 2010.
19. Nehra V, Kumar A, Dwivedi HK. Atmospheric non-thermal plasma sources. Int J Eng 2008;2:53–68.
20. Jögl, I et al. plasma treatment for environment protection. EU 2012.
21. Rahimi S. Sterilization and Sterilizer devices. Mashhad: Lotus Publishing; 2017. [in Persian] [.رحیمی سارا. استریلیزاسیون و دستگاه‌های استریلایزر. مشهد: انتشارات لوتوس؛ 1396]
22. MohammadiKia M, Jamshidian M. Plasma Technology and Its applications in the food packaging. first Natl. Conf. Dev. a Compr. Strateg. Tehran: Iran National Quality Award; 2014. [in Persian] [محمدی‌کیا میلاد، جمشیدیان مجید. فناوری پلاسما و کاربردهای آن در صنعت بسته‌بندی مواد غذایی. نخستین کنفرانس ملی توسعه کیفیت راهبردی فراگیر در سلامت غذا. تهران: انجمن مدیریت کیفیت ایران؛ 1393]
23. Malik T, Parmar S. Use of plasma Technology in Textiles. Fibre2Fashion Pvt Ltd 2018. (accessed May 20, 2018).
24. Decina A. Plasma For Materials. Plasmaprometeo; Cent Excell Res Dev Technol Transf F Appl Plasmas 2013. (accessed May 8, 2018).
25. A Hashemi A, Khatibi S. Plasma technology and its applications in waste disposal. Application of chemistry in the environment, Islamic Azad University, Ahar branch 2010; 1(3):35–45. [in Persian] [اصل هاشمی احمد، خطیبی شاکر. تکنیک پلاسما و کاربرد آن در دفع مواد زائد. کاربرد شیمی در محیط زیست؛ دانشگاه آزاد اسلامی؛ واحد اهر. 1389؛ 1(3): 35-45. ]
26. Taylor W. Technical synopsis of plasma surface treatments. Univ Florida, Gainesville, FL 2009.
27. Mazloom S, F Shojaei M, Kamani M, Mirzaei H. An review on the possibility of using cold plasma technology in the packaging industry. J Packag Sci Technol 2013; 4(14):48–61. [in Persian] مظلوم سوگل، فلاح شجاعی مونا، کمانی محمدحسن، میرزایی حبیب‌الله. مروری بر امکان استفاده از فناوری پلاسمای سرد در صنعت بسته‏بندی. فصلنامه علمی-ترویجی علوم و فنون بسته‌بندی. 1392؛ 4(14): 48-61.]
28. Matsumoto T, Wang D, Namihira T, Akiyama H. Non-thermal plasma technic for air pollution control. Air Pollution-A Compr. Perspect., InTech; 2012. [DOI:10.5772/50419]
29. Meyer-Vernet N. Les plasmas, quatrième ètat de la matière. Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique Observatoire de Paris; CNRS. Universite A. Rodin. 2017.
30. Cormier J M. Dépollution des effluents gazeux par plasma; A la pointe de l’instrumentation et de la technologie. Centre National de la Recherche Scientifique:(CNRS) France. n.d. (accessed Feb 30, 2018).
31. Shishoo R. Plasma technologies for textiles. Elsevier; 2007. [DOI:10.1533/9781845692575]
32. Kotzamanidi I, Anastassiadis A, Filippaki L, Filippakis SE, Vassiliou P, Sarris E. Effects of plasma cleaning and conservation treatment on the corrosion layer of corroded steel–XRD evaluation. Anti-Corrosion Methods Mater 2002;49:256–63. [DOI:10.1108/00035590210431755]
33. Krčma F, Sázavská V, Zemánek N, Řádková L, Fojtíková P, Přikryl R, et al. Reduction of Corrosion Layers in Low Temperature Plasma. Proc. XVIIIth Symp. Phys. Switch. Arc, 2009, p. 60–9.
34. Schmidt-Ott K. Plasma-reduction: Its potential for use in the conservation of metals. Proc Met 2004;4:235–46.
35. Schmidt-Ott K. Applications of low pressure plasma treatment at the Swiss National Museum and assessment of the results. Zeitschrift Für Schweizerische Archäologie Und Kunstgeschichte 1997;54:45–50.
36. Boselli M, Chiavari C, Colombo V, Ghedini E, Gherardi M, Martini C, et al. Atmospheric pressure non-thermal plasma cleaning of 19th century daguerreotypes. Int. Conf. Plasma Sci. (ICOPS), San Fr. CA, 2013.
37. Barger MS, Giri AP, White WB, Edmondson TM. Cleaning daguerreotypes. Stud Conserv 1986;31:15–28.
38. Centeno SA, Meller T, Kennedy N, Wypyski M. The daguerreotype surface as a SERS substrate: characterization of image deterioration in plates from the 19th century studio of Southworth & Hawes. J Raman Spectrosc An Int J Orig Work All Asp Raman Spectrosc Incl High Order Process Also Brillouin Rayleigh Scatt 2008;39:914–21. [DOI:10.1002/jrs.1934]
39. Barger MS, Messier R, White WB. Nondestructive assessment of daguerreotype image quality by diffuse reflectance spectroscopy. Stud Conserv 1984;29:84–6.
40. Turovets I, Maggen M, Lewis A. Cleaning of daguerreotypes with an excimer laser. Stud Conserv 1998;43:89–100.
41. Totolin M, Macocinschi D, Ioanid GE, Filip D, Ioanid A. Materials supports for cultural heritage objects treated in cold plasma. Optoelectron Adv Mater-Rapid Commun 2007;1:309–14.
42. Totolin M, Cazacu G, Vasile C. Cellulosic materials modification by physical and chemical methods. Fine Struct Papermak Fibres, COST Action E54 Book,(Eds P Ander, W Bauer, S Heinemann, P Kallio, R Passas A Treimanis), COST Off Brussels 2011:27–38.
43. Jung HZ, Ward TL, Benerito RR. The effect of argon cold plasma on water absorption of cotton. Text Res J 1977;47:217–23. [DOI:10.1177/004051757704700312]
44. Ward TL, Benerito RR. Modification of cotton by radiofrequency plasma of ammonia. Text Res J 1982;52:256–63. [DOI:10.1177/004051758205200405]
45. Malek RMA, Holme I. The effect of plasma treatment on some properties of cotton. Iran Polym J 2003;12:271–80.
46. Fisher ER. A Review of Plasma‐Surface Interactions During Processing of Polymeric Materials Measured Using the IRIS Technique. Plasma Process Polym 2004;1:13–27. [DOI:10.1002/ppap.200400011]
47. Ioanid G, Ioanid A, Rusu D. High frequency cold plasma possibility of applica-tion in the stationare cultural heritage field. Eur J Sci Theol 2010;6:83–92.
48. Leclaire C, Lecoq E, Orial G, Clement F, Bousta F. Fungal decontamination by cold plasma: an innovating process for wood treatment. Braga COST Action IE0601/ESWM-International Conf., 2008, p. 5–7.
49. Ioanid G, Ioanid A, Rusu D, Salajean D. Behaviour under high frequency plasma treatment of some pigments used for painting of religious icons on wood. Eur J Sci Theol 2011;7:79–89.
50. Patelli A, Favaro M, Simon S, Storme P, Scopece P, Kamenova V, et al. PANNA Project–Plasma and Nano for New Age Soft Conservation. Development of a Full-Life Protocol for the Conservation of Cultural Heritage. Euro-Mediterranean Conf., 2012, p. 793–800.
51. Milyana, S et al. Cleaning of varnish on 18th century russian icon Saint Nicholas by means of atmospheric pressure plasma. 6th Int. Congr. Sci. Technol. Safeguard Cult. Herit. Mediterr. Basin, Athens,Greece: 2013.
52. Kamenova, V et al. Oil overpaintings removal using atmospheric pressure plasma. VALMAR-Roma: 2014.
53. Voltolina S, Aibéo C, Cavallin T, Egel E, Favaro M, Kamenova V, et al. Assessment of atmospheric plasma torches for cleaning architectural surfaces. Built Herit 2013;4:1051–7.
54. Aibeo C, Egel E, Pamplona M, Simon S. Cleaninig graffiti and soot with atmospheric plasma. Berliner Beitrage Zur Archaom Kunsttechnologie Und Konserv 2014;22:69–76.
55. Plasma cleaning for Prato delle Valle. PANNA Proj 2016.
56. Anca Sandu IC, Bracci S, Lobefaro M, Sandu I. Integrated methodology for the evaluation of cleaning effectiveness in two Russian icons (16th–17th centuries). Microsc Res Tech 2010;73:752–60.

Add your comments about this article : Your username or Email:

Send email to the article author

© 2018 All Rights Reserved | Journal of Research on Archaeometry

Designed & Developed by : Yektaweb