فناوری تولید سفال از نوسنگی به مس‌سنگی (باکون میانه) در تپه رحمت آباد فارس بر اساس داده های سفال‌نگاری و شیمیایی - پژوهه باستان سنجی
سال 8، شماره 1 - ( 1401 )                   سال 8 شماره 1 صفحات 44-21 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشکده حفاظت و مرمت، دانشگاه هنر اصفهان، اصفهان، ایران ، aminemami.ae@gmail.com
2- پژوهشکدۀ باستان شناسی، پژوهشگاه میراث فرهنگی و گردشگری، تهران، ایران
3- دانشکده حفاظت و مرمت، دانشگاه هنر اصفهان، اصفهان، ایران
چکیده:   (1011 مشاهده)
تپه‌ی رحمت آباد، تپه‌ی باستانی مهمی واقع در دشت کمین در شهرستان پاسارگاد، واقع در استان فارس است که به عنوان یک محوطه باستانی کلیدی با توالی فرهنگی از دوران پیش از تاریخ تا اسلامی شناخته می شود. 10 قطعه سفال از دوره نوسنگی و 5 قطعه سفال از دوره مس سنگی (اوایل باکون میانی) محوطه رحمت آباد با استفاده از روش های پتروگرافی، XRD و XRF به منظور مقایسه ترکیب شیمیایی و سیر تغییرات تکنولوژی سفالگری در دوره­های نوسنگی  و مس سنگی مورد بررسی قرار گرفتند. این تپه بر پایه تاریخ گذاری مطلق کربن 14 دارای قدمتی از اواسط هزاره هشتم ق.م است. پراکندگی و تغییرات ترکیب شیمیایی سفال‌ها در این مرحله بر اساس نمودار رانکین در سیستم SiO2-Al2O3-CaO+MgO مورد مطالعه قرار گرفت و بر اساس آن تمرکز بر تنوع منشاء مواد مورد استفاده برای ساخت سفال، چگونگی ساخت سفال‌ها و شناخت و مقایسه‌ی تکنیک ساخت سفال از نوسنگی به مس‌سنگی در محوطه‌ی  یاد شده مورد تحلیل و بررسی قرار گرفته است. مطالعات شیمیایی و مینرالوژی بر روی سفال‌های مورد آزمایش در این منطقه حاکی از توالی مشخص استفاده از مواد خام یکسان ولی با تکنیک متفاوت در طی دوران نو سنگی  و مس‌سنگی در تپه رحمت‌آباد است. همچنین پیشرفت و توسعه تکنیک سفالگری مورد استفاده در تپه رحمت آباد، این محوطه را به‌عنوان یک  محوطه شاخص در سیر ترقی تکنولوژی طی دوره باکون در باستان­شناسی حوزه رود پلوار معرفی می‌نماید.
متن کامل [PDF 4107 kb]   (680 دریافت)    
یاداداشت علمی: پژوهشي | موضوع مقاله: باستان سنجی
دریافت: 1401/1/30 | پذیرش: 1401/4/25 | انتشار: 1401/5/30 | انتشار الکترونیک: 1401/5/30

فهرست منابع
1. Roux V. Anthropological interpretation of ceramic assemblages: foundations and implementations of technological analysis. Archaeopress; 2011.
2. Hein A, Kilikoglou V. Modeling of the microstructure of ancient functional ceramics and assessment of their performance. Procedia Structural Integrity. 2018;10:219-26. [DOI:10.1016/j.prostr.2018.09.031]
3. Hein A, Kilikoglou V, Martinón-Torres M. Heat transfer properties of post-medieval crucibles. Archaeological and Anthropological Sciences. 2018;11(4):1571-5. [DOI:10.1007/s12520-018-0669-8]
4. Kilikoglou V, Vekinis G, Maniatis Y, Day P. Mechanical Performance of Quartz‐Tempered Ceramics; Part I, Streight and Toughness*. Archaeometry. 1998;40(2):261-79. [DOI:10.1111/j.1475-4754.1998.tb00837.x]
5. Rehren T, Boscher L, Pernicka E. Large scale smelting of speiss and arsenical copper at Early Bronze Age Arisman, Iran. Journal of Archaeological Science. 2012;39(6):1717-27. [DOI:10.1016/j.jas.2012.01.009]
6. Tite MS. Pottery production, distribution, and consumption-the contribution of the physical sciences. Journal of archaeological method and theory. 1999;6(3):181-233. [DOI:10.1023/A:1021947302609]
7. Stein A. Archaeological Reconnaissances in North-western India and South-eastern Īrān: Carried Out and Recorded with the Support of Harvard University and the British Museum: Macmillan; 1937.
8. Weeks L, Alizadeh K, Niakan L, Alamdari K, Zeidi M, Khosrowzadeh A, et al. The Neolithic settlement of highland SW Iran: new evidence from the Mamasani District. Iran. 2006;44(1):1-31. [DOI:10.1080/05786967.2006.11834679]
9. Childe VG. The Urban Revolution. The City Reader: Routledge; 2015. p. 54-62. [DOI:10.4324/9781315748504-13]
10. Watkins T. New light on Neolithic revolution in south-west Asia. Antiquity. 2010;84(325):621-34. [DOI:10.1017/S0003598X00100122]
11. Wailes B. V. Gordon Childe and the relations of production. Craft specialization and social evolution: In memory of V Gordon Childe. 1996:3-14.
12. Berberian M, Shahmirzādi SM, Djamali M. Archeoseismicity and environmental crises at the Sialk mounds, central Iranian plateau, since the Early Neolithic. Journal of Archaeological Science. 2012;39(9):2845-58. [DOI:10.1016/j.jas.2012.04.001]
13. Malek Shahmirzadi S. A specialized Housebuilder in an Iranian village of the VIth Millennium BC. Paléorient. 1979:183-92. [DOI:10.3406/paleo.1979.4246]
14. Azizi Kharanaghi H, Fazeli Nashli H, Nishiaki Y. The Second Season of Excavations at Tepe Rahmat Abad, Southern Iran: The Absolute and Relative Chronology. Ancient Near Eastern Studies. 2014;51:1-32.
15. Pollard AM, Davoudi H, Mostafapour I, Valipour HR, Nashli HF. A New radiocarbon chronology for the late Neolithic to Iron age in the Qazvin plain, Iran. The International Journal of Humanities. 2012;19(3):110-51.
16. Maggetti M. Phase analysis and its significance for technology and origin. Archaeological ceramics: Smithsonian Institution Press; 1982. p. 121-33.
17. Maggetti M. Archaeometry: quo vadis? Geological Society, London, Special Publications. 2006;257(1):1-8. [DOI:10.1144/GSL.SP.2006.257.01.01]
18. Emami MA, Trettin R. High Tech in 5100 BC: multianalytical approach for characterisation of decorated pottery from Tappeh-Zaghe. Surface Engineering. 2013;29(2):134-9. [DOI:10.1179/1743294412Y.0000000063]
19. Kharanaghi HA, Nashli HF, Nishiaki Y. Tepe Rahmatabad: a prepottery and pottery neolithic site in Fars province. Neolit Iran. 2013;108. [DOI:10.2307/j.ctvh1dp0q.13]
20. Nishiaki Y, Kharanaghi MHA, Abe M. The Late Aceramic Neolithic Flaked Stone Assemblage from Tepe Rahmatabad, Fars, South-West Iran. Iran. 2013;51(1):1-15. https://doi.org/10.1080/05786967.2010.11864769 [DOI:10.1080/05786967.2013.11834721]
21. Abdi K, Pollock S, Bernbeck R. Fars archaeology project 2003: excavations at Toll-e Bashi. Iran. 2003;41(1):339-44. [DOI:10.2307/4300654]
22. Nishiaki Y. A radiocarbon chronology for the neolithic settlement of Tall-i Mushki, Marv Dasht Plain, Fars, Iran. Iran. 2010;48(1):1-10. https://doi.org/10.1080/05786967.2010.11864769 [DOI:10.1080/05786967.2013.11834721]
23. Marghussian AK, Fazeli H, Sarpoolaky H. Chemical-Mineralogical Analyses and Microstructural Studies of Prehistoric Pottery from Rahmatabad, South-West Iran*. Archaeometry. 2009;51(5):733-47. [DOI:10.1111/j.1475-4754.2008.00439.x]
24. Bernbeck R, Pollock S, Nashli HF. Rahmatabad: dating the aceramic Neolithic in Fars Province. NEO-LITHICS 1/08. 2009:3-39.
25. Alizadeh A, editor. The origins of state organizations in prehistoric highland Fars, southern Iran, excavations at Tall-e Bakun. The University of Chicago orientalinstitute Publication, Vol. 128,2006.
26. Emami M, Chapoulie R, Abdi K. Cathodoluminescence microscopy for interpreting the fabric and heating process of ancient pottery: Preliminary study on the technological features of pottery from the Kur River basin. Archaeometry. 2021;64(2):337-56. [DOI:10.1111/arcm.12718]
27. Pincé P, Braekmans D, Lycke S, Vandenabeele P. Ceramic Production in the Kur River Basin (Fars, Iran) During the Middle to Late Second Millennium BCE : A Geochemical and Technological Characterization. Archaeometry. 2019;61(3):556-73. [DOI:10.1111/arcm.12451]
28. Burton MM, Quinn PS, Bennallack K, Farahani A, Howland MD, Najjar M, et al. Ceramic technology at Wadi Fidan 61, an early Pottery Neolithic site (ca. 6500 B.C.E.) in the Faynan region of southern Jordan. Journal of Archaeological Science: Reports. 2021;38:103029. [DOI:10.1016/j.jasrep.2021.103029]
29. Rathossi C, Pontikes Y, Tsolis-Katagas P. Mineralogical differences between ancient sherds and experimental ceramics: Indices for firing conditions and post- burial alteration. Bulletin of the Geological Society of Greece Proceedings of the 12th International Congress. 2010;XLIII 43(2):856-65. [DOI:10.12681/bgsg.11251]
30. Aloupi-Siotis E. Ceramic technology: how to characterise black Fe-based glass-ceramic coatings. Archaeological and Anthropological Sciences. 2020;12(8):1-15. [DOI:10.1007/s12520-020-01134-x]
31. Hein A, Kilikoglou V. Ceramic raw materials: how to recognize them and locate the supply basins: chemistry. Archaeological and Anthropological Sciences. 2020;12(8):1-17. [DOI:10.1007/s12520-020-01129-8]
32. Amadori ML, Pallante P, Fermo P, Emami MA, Chaverdi AA, Callieri P, et al. Advances in Achaemenid brick manufacturing technology: Evidence from the monumental gate at Tol-e Ajori (Fars, Iran). Applied Clay Science. 2018;152:131-42. [DOI:10.1016/j.clay.2017.11.004]
33. Chapoulie R, Déléry C, Daniel F, VENDRELL‐SAZ M. Cuerda seca ceramics from al‐andalus, islamic spain and portugal (10th− 12th centuries ad): Investigation with sem-edx and cathodoluminescence. Archaeometry. 2005;47(3):519-34. [DOI:10.1111/j.1475-4754.2005.00217.x]
34. Whitney DL, Evans BW. Abbreviations for names of rock-forming minerals. American mineralogist. 2010;95(1):185-7. [DOI:10.2138/am.2010.3371]
35. Emami SM, Trettin R. Phase Generating Processes in Ancient Ceramic Matrices Through Microstructure Investigation with High Resolution Microscopy Methods. Journal of Advanced Microscopy Research. 2010;5(3):181-9. [DOI:10.1166/jamr.2010.1040]
36. Fabbri B, Gualtieri S, Shoval S. The presence of calcite in archeological ceramics. Journal of the European Ceramic Society. 2014;34(7):1899-911. [DOI:10.1016/j.jeurceramsoc.2014.01.007]
37. Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ. Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy. 2001;13(3):621-34. [DOI:10.1127/0935-1221/2001/0013-0621]
38. Maggetti M, Schwab H. Iron Age fine pottery from Châtillon-s-glâre and the Heuneburg. Archaeometry. 1982;24(1):21-36. [DOI:10.1111/j.1475-4754.1982.tb00644.x]
39. Gál Á, Ionescu C, Bajusz M, Codrea VA, Hoeck V, Barbu-Tudoran L, et al. Composition, technology and provenance of Roman pottery fromNapoca(Cluj-Napoca, Romania). Clay Minerals. 2019;53(4):621-41. [DOI:10.1180/clm.2018.47]
40. Emami M, Trettin R. Mineralogical and chemical investigations on the ceramic technology in Čoġā Zanbil,(Iran, 1250 BC). Periodico di Mineralogia Vol 81, 3. 2012:359-77.
41. Gliozzo E. Ceramic technology. How to reconstruct the firing process. Archaeological and Anthropological Sciences. 2020;12(11):260. [DOI:10.1007/s12520-020-01133-y]
42. Gliozzo E. Ceramics investigation: research questions and sampling criteria. Archaeological and Anthropological Sciences. 2020;12(8):202. [DOI:10.1007/s12520-020-01128-9]
43. Ricci C, Borgia I, Brunetti B, Sgamellotti A, Fabbri B, Burla M, et al. A Study on Late Medieval Transparent‐glazed Pottery and Archaic Majolica from Orvieto (Central Italy). Archaeometry. 2005;47(3):557-70. [DOI:10.1111/j.1475-4754.2005.00219.x]
44. Fors Y, Nilsson T, Risberg ED, Sandström M, Torssander P. Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels. International Biodeterioration & Biodegradation. 2008;62(4):336-47. [DOI:10.1016/j.ibiod.2007.11.008]
45. Aladel BA, Sabree IK, Edrees SJ. Effects of mgo wt.% on the structure, mechanical, and biological properties of bioactive glass-ceramics in the SiO2, Na2O, CaO, P2O5, mgo system. International Journal of Mechanical Engineering and Technology. 2019;10(1):97-106.
46. Freestone IC. Applications and Potential of Electron Probe Micro‐Analysis in Technological and Provenance Investigations of Ancient Ceramics. Archaeometry. 1982;24(2):99-116. [DOI:10.1111/j.1475-4754.1982.tb00993.x]
47. Barkoudah Y, Henderson J. Plant Ashes from Syria and the Manufacture of Ancient Glass: Ethnographic and Scientific Aspects. Journal of glass studies. 2003;48.
48. Marghussian A, Coningham R, Fazeli H. The Evolution of Pottery Production During The Late Neolithic Period at Sialk On The Kashan Plain, Central Plateau of Iran. Archaeometry. 2017;59(2):222-38. [DOI:10.1111/arcm.12258]
49. Rouhani A, Azimzadeh H, Sotoudeh A, Thomalsky J, Emami H. Geochemical analysis of multi-element in archaeological soils from Tappe Rivi in Northeast Iran. Acta Geochimica. 2022. [DOI:10.1007/s11631-021-00500-3]
50. Simsek Franci G, Colomban P. On-Site Identification of Pottery with pXRF: An Example of European and Chinese Red Stonewares. Heritage. 2021;5(1):88-102. [DOI:10.3390/heritage5010005]
51. Ho JWI, Quinn PS. Intentional clay-mixing in the production of traditional and ancient ceramics and its identification in thin section. Journal of Archaeological Science: Reports. 2021;37:102945. [DOI:10.1016/j.jasrep.2021.102945]
52. Noll W, Heimann RB. Ancient Old World Pottery: Schweizerbart Science Publisher; 2016.
53. Christidis GE, Shriner CM, Murray HH. An Integrated Methodological Approach for Source-Clay Determination of Ancient Ceramics: The Case of Aegina Island, Greece. Clays and Clay Minerals. 2014;62(6):447-69. [DOI:10.1346/CCMN.2014.0620601]
54. Spataro M. A comparison of chemical and petrographic analyses of Neolithic pottery from South-eastern Europe. Journal of Archaeological Science. 2011;38(2):255-69. [DOI:10.1016/j.jas.2010.08.026]
55. Jones MD, Djamali M, Holmes J, Weeks L, Leng MJ, Lashkari A, et al. Human impact on the hydroenvironment of Lake Parishan, SW Iran, through the late-Holocene. The Holocene. 2015;25(10):1651-61. [DOI:10.1177/0959683615594242]
56. Maggetti M, Neururer C, Ramseyer D. Temperature evolution inside a pot during experimental surface (bonfire) firing. Applied Clay Science. 2011;53(3):500-8. [DOI:10.1016/j.clay.2010.09.013]
57. Noll W, Heimann RB. Ancient Old World Pottery. 2016.
58. Aladel BA, Sabree IK, Edrees SJ. Effects of MgO wt.% on the Structure, Mechanical, and Biological Properties of Bioactive Glass-Ceramics in the SiO2, Na2O, CaO, P2O5, MgO System.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.