The Application of Portable XRF in Archaeometry and cultural –historical Materials - Journal of Research on Archaeometry
year 1, Issue 1 (2015)                   JRA 2015, 1(1): 87-101 | Back to browse issues page


XML Persian Abstract Print


Johann Wolfgang Goethe-Universität , moein.eslami@srud.uni-funkfun.de
Abstract:   (9101 Views)

Study of cultural and historical materials excavated from the archaeological excavation is one of the most important goals of Archaeometry, in order to answer a lot of questions in archaeology. In this regard, elemental analysis is important factors in the realization of this aim. Numerous analytical methods have been used for this purpose traditionally. Among them, X-ray fluorescence spectroscopy (XRF) methods, inductively coupled plasma spectroscopy (ICP-MS) or neutron activation analysis (INAA) can be noted. In recent years, the use of portable X-ray fluorescence instrument is one of the ways that has been received a lot of attention and is expanding and improving continuously. The good accuracy as well as fieldwork possibility of this non-destructive method has led it to increasingly attains more popularity. In particular, this method has been used more and more in classification and provenance study of pottery and stone artifacts. Although very few institutions in Iran, including Tehran Art University, have access to this tool but due to the unique features of this device, it seems that its use will be expanded in next year’s. This paper attempts to give a general idea about this technique to the researchers and students, and review its advantages, limitations and application in cultural heritage purposes. There is almost no any other portable analytical tool, which is become so familiar and user-friendly like portable XRF. As this technique is actually a surface analysis and penetration x-ray is limited to some millimeter, the target surface must be free of likely contaminations. However it would help researchers in different fields studies like museum studies, Archaeometry, archaeology, geoarchaeology or conservation of artifact. In theory, all elements except H & He could be identified with this technique. However, identification of light elements with low atomic numbers is very hard. With using a new generation of silicon drift detectors, it is possible that elements from Mg (Z=12) to U (Z=92) be detected. Besides qualitative studies, this instrument has been used widely for quantitative analysis. Classification and provenance studies are the main application of this tool in archaeology. With appropriate calibration and statistical methods reliable results would be acquired. Some examples of ancient potteries from Zanjan are given in this issue. Clustering test (CA) and principle component analysis (PCA) are the two most used statistical methods in interpretation of quantitative results of XRF.

Full-Text [PDF 811 kb]   (3000 Downloads)    
Technical Note: Review | Subject: Archaeometry
Received: 2015/07/5 | Accepted: 2015/08/16 | Published: 2015/09/23 | ePublished: 2015/09/23

References
1. Ardid, M., Ferrero, J. L., Juanes, D., Lluch, J. L., & Roldán, C. (2004). Comparison of Total-Re-flection X-Ray Fluorescence, Static and Portable Energy Dispersive X-Ray Fluorescence Spectrometers for Art and Archeometry Studies. Spectrochimica Acta Part B: Atomic Spectroscopy, 59(10-11), 1581-1586. [DOI]
2. Baxter, M. (2003). Statistics in archaeology. Oxford University Press.
3. Baxter, M. (2004). Multivariate analysis of archaeometric data—lecture notes M.J. Baxter originally 2004.
4. Baxter, M. J., Beardah, C., Papageorgiou, I., Cau, M. A., Day, P. M., & Kilikoglou, V. (2007). On statistical approaches to the study of ceramic artifacts using geochemical and Petrographic Data. Archaeometry, 50(1), 142-157. [DOI]
5. Cesareo, R., Castellano, A., Buccolieri, G., Quarta, S., Marabelli, M., Santopadre, P., Brunetti, A. (2004). Portable equipment for energy disper‌sive x-ray fluorescence analysis of Giotto’s fres‌coes in the chapel of the Scrovegni. Nuclear In‌struments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 213, 703-706. [DOI]
6. Conrey, R. M., Goodman-Elgar, M., Bettencourt, N., Seyfarth, A., Van Hoose, A., & Wolff, J. A. (2014). Calibration of a portable x-ray fluorescence spectrometer in the analysis of archaeological samples using influence coefficients. Geochemistry: Exploration, Environment, Analy‌sis, 14(3), 291-301. [DOI]
7. Darabi, H., & Glascock, M. D. (2013). The source of obsidian artefacts found at east Chia Sabz, western Iran. Journal of Archaeological Science, 40(10), 3804-3809. [DOI]
8. Drennan, R. D. (2010). Statistics for archaeolo‌gists. Springer.
9. Edwards, H. G. M., & Vandenabeele, P. (2012). Analytical archaeometry. Cambridge: Royal Society of Chemistry.
10. Emery, V. L., & Morgenstein, M. (2007). Portable EDXRF analysis of a mud brick necropolis en-closure: Evidence of work organization, el hibeh, middle egypt. Journal of Archaeological Science, 34(1), 111-122. [DOI]
11. Ferrero, J. L., Roldán, C., Juanes, D., Rollano, E., & Morera, C. (2002). Analysis of pigments from Spanish works of art using a portable EDXRF spectrometer. XRS X-Ray Spectrome‌try, 31 (6), 441-447. [DOI]
12. Forouzan, F., Glover, J. B., Williams, F., & De-ocampo, D. (2012). Portable XRF analysis of zoomorphic figurines, “tokens,” and sling bul‌lets from Chogha Gavaneh, Iran. Journal of Archaeological Science, 39(12), 3534-3541. [DOI]
13. Frahm, E., Schmidt, B. A., Gasparyan, B., Yer‌itsyan, B., Karapetian, S., Meliksetian, K., & Adler, D. S. (2014). Ten seconds in the field: Rapid Armenian obsidian sourcing with porta‌ble XRF to inform excavations and surveys. Journal of Archaeological Science, 41, 333-348. [DOI]
14. Frahm, E., & Doonan, R. C. (2013). The technological versus methodological revolution of portable XRF in archaeology. Journal of Archaeological Science, 40(2), 1425-1434. [DOI]
15. Glinsman, L. D. (2005). The practical application of air-path x-ray fluorescence spectrometry in the analysis of museum objects. Studies in Conservation, 50(Supplement-1), 3-17. [DOI]
16. Goren, Y., Mommsen, H., & Klinger, J. (2011). Non-destructive provenance study of cuneiform tablets using portable x-ray fluorescence (pxrf). Journal of Archaeological Science, 38(3), 684-696. [DOI]
17. Helfert, M. (2013). Geochemische untersuchungen an spätlatènezeitlicher und frührömischer keramik vom martberg. In C. Nickel, A. Haffner, & C. Bendall (Eds.), Martberg: Heiligtum und oppidum der treverer III, teil 1. III, teil 1. Koblenz: Generaldirektion Kulturelles Erbe Rheinland-Pfalz, Direktion Landesarchäologie, Koblenz.
18. Hochleitner, B., Desnica, V., Mantler, M., & Schreiner, M. (2003). Historical pigments: A collection analyzed with x-ray diffraction analy‌sis and x-ray fluorescence analysis in order to create a database. Spectrochimica Acta Part B: Atomic Spectroscopy, 58(4), 641-649 [DOI]
19. Holakooei, P., Petrucci, F. C., Tassinari, R., & Vaccaro, C. (2013). Application of WDXRF in the provenance studies of persian haft rang tiles: A statistical approach XRS X-Ray Spectrometry, 42(2), 105-115. [DOI]
20. Hunt, A. M., & Speakman, R. J. (2015). Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science, 53, 626-638. [DOI]
21. Khademi Nadooshan, F., Abedi, A., Glascock, M. D., Eskandari, N., & Khazaee, M. (2013). Provenance of prehistoric obsidian artefacts from kul tepe, northwestern iran using x-ray fluorescence (XRF) analysis. Journal of Archaeological Science, 40(4), 1956-1965. [DOI]
22. Kilikoglou, V., Maniatis, Y., & Grimanis, A. P. (1988). The effect of purification and firing of clays on trace element provenance studies. Archaeometry, 30 (1), 37-46. [DOI]
23. Koenig, C. W., Castañeda, A. M., Boyd, C. E., Rowe, M. W., & Steelman, K. L. (2014). Portable x-ray fluorescence spectroscopy of picto-graphs: A case study from the lower pecos can-yonlands, texas. Archaeometry, 56, 168-186. [DOI]
24. Krug, S., & Hahn, O. (2014). Portable x-ray fluo-rescence analysis of pesticides in the textile collection at the German historical museum, ber‌lin. Studies in conservation., 59(6), 355-366. [DOI]
25. Liritzis, I., & Zacharias, N. (2011). Portable XRF of archaeological artifacts: Current research, potentials and limitations. In M. S. Shackley (Ed.), X-ray flourescence spectroscopy (XRF) in geoarchaeology (pp. 109-142). Springer.
26. Longoni, A., Fiorini, C., Leutenegger, P., Sciuti, S., Fronterotta, G., Strüder, L., & Lechner, P. (1998). A portable XRF spectrometer for non-destructive analyses in archaeometry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detec‌tors and Associated Equipment, 409(1), 407-409. [DOI]
27. Mantler, M., & Schreiner, M. (2000). X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrometry, 29(1), 3-17. [DOI]
28. Moioli, P., & Seccaroni, C. (2000). Analysis of art objects using a portable x-ray fluorescence spectrometer. X-Ray Spectrometry, 29(1), 48-52. [DOI]
29. Mommsen, H., & Sjöberg, B. L. (2007). The importance of the best relative fit factor when evaluating elemental concentration data of pottery demonstrated with mycenaean sherds from sinda, cyprus. Archaeometry, 49(2), 359-371 [DOI]
30. Morgenstein, M., & Redmount, C. A. (2005). Using portable energy dispersive x-ray fluorescence (EDXRF) analysis for on-site study of ceramic sherds at el hibeh, egypt. Journal of Archaeological Science, 32(11), 1613-1623. [DOI]
31. Murphy, R. V., Maharaj, H., Lachapelle, J., & Yuen, P. K. (2010). Operator of portable x-ray fluorescence analyzers: Certification information and examination preparation booklet. Natural Resources Canada, Version, 3, 23.
32. Nazaroff, A. J., Prufer, K. M., & Drake, B. L. (2010). Assessing the applicability of portable x-ray fluorescence spectrometry for obsidian provenance research in the maya lowlands. Journal of Archaeological Science, 37(4), 885-895. [DOI]
33. Newman, B., & Loendorf, L. (2005). Portable x-ray fluorescence analysis of rock art pigments. Plains Anthropologist, 50 (195), 277-283. [DOI]
34. Niknami, K. A., Amirkhiz, A. C., & Glascock, M. D. (2010). Provenance studies of chalcolithic obsidian artefacts from near lake urmia, north-western iran using wdxrf analysis. Archaeometry, 52(1), 19-30. [DOI]
35. Papadopoulou, D., Sakalis, A., Merousis, N., & Tsirliganis, N. C. (2007). Study of decorated archeological ceramics by micro x-ray fluorescence spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelera‌tors, Spectrometers, Detectors and Associated Equipment, 580 (1), 743-746.
36. Potts, P. J., & West, M. (2008). Portable X-ray fluorescence spectrometry capabilities for in situ analysis. Cambridge,
37. Quattrini, M. V., Ioele, M., Sodo, A., Priori, G. F., & Radeglia, D. (2014). A seventeenth century Japanese painting: Scientific identification of materials and techniques. Studies in Conservation., 59(5), 328-340. [DOI]
38. Schreiner, M., Frühmann, B., Jembrih-Simbürger, D., & Linke, R. (2004). X-rays in art and archaeology: An overview. Advances in X-ray Analysis, 47(01), 3-17. [DOI]
39. Shackley, M. S. (2010). Is there Reliability and Validity in Portable X-Ray Fluorescence Spectrometry (PXRF)? Voices in American Archaeol‌ogy, 10(5).
40. Shackley, M. S. (2011). An introduction to x-ray fluorescence (XRF) analysis in archaeology. In X-ray fluorescence spectrometry (XRF) in geoar‌chaeology (pp. 7-44). Springer.
41. Sharma, A., Weindorf, D. C., Man, T., Aldabaa, A. A. A., & Chakraborty, S. (2014). Character‌izing soils via portable x-ray fluorescence spec‌trometer: 3. Soil reaction (ph). Geoderma, 232-234, 141-147. [DOI]
42. shugar, A. N., & Sirois, J. (2012). Handheld XRF use in the identification of heavy metal pesti‌cides in ethnographic collections. In J. L.Mass & A. N. Shugar (Eds.), Handheld XRF for art and archaeology.
43. Speakman, R. J., Little, N. C., Creel, D., Miller, M. R., & Iñañez, J. G. (2011). Sourcing ce‌ramics with portable XRF spectrometers?: A comparison with INAA using members pottery from the American southwest. Journal of Ar‌chaeological Science, 38(12), 3483-3496 [DOI]
44. Stuart, B. H. (2007). Analytical techniques in mate-rials conservation. John Wiley & Sons.
45. Tan, P. N., Steinbach, K., & Kumar, V. (2006). Data mining cluster analysis: Basic concepts and algorithms. Boston: Pearson Addison Wesley. Retrieved from Google Scholar.
46. Weindorf, D. C., Zhu, Y., McDaniel, P., Valerio, M., Lynn, L., Michaelson, G., . . Ping, C. L. (2012). Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and albic horizons. Geoderma, 189-190, 268-277. [DOI]
47. Zhu, Y., Weindorf, D. C., & Zhang, W. (2011). Characterizing soils using a portable x-ray fluorescence spectrometer: 1. Soil texture. Ge‌oderma, 167-168, 167-177. [DOI]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.