Radiocarbon Calibration and Stratigraphic Analysis in Archeology: Using the OxCal Program - Journal of Research on Archaeometry
year 7, Issue 2 (2021)                   JRA 2021, 7(2): 183-195 | Back to browse issues page


XML Persian Abstract Print


1- Department of Archaeology, Faculty of Literature and Humanities, University of Tehran, Iran , yazdani.sahar@ut.ac.ir
2- Department of Archaeology, Faculty of Literature and Humanities, University of Tehran, Iran
Abstract:   (1465 Views)
In today's archaeological studies, the use of absolute chronology by radiocarbon or carbon 14 dating is common and can even reduce errors due to incorrect stratigraphy and disturbed layers. The measurement accuracy of this method is very high with proper sampling, and with the advancement of science and technology, software programs were created to perform specialized and lengthy calculations to convert and calibrated the results. One of these programs is OxCal, which seems to be useful for researchers both online and offline. In this article, in addition to a brief explanation of how to perform this sorting, we will teach you how to use this program for single data, phases, subphases (adjacent phases) and overlapping phases in a very simple way without need for coding. The basis of archaeological studies is to know and understand the sequence of events and activities that are obtained from the archaeological findings. There are numerous dating methods in modern archeology around the world that are constantly being updated. One of the most common and popular chronological methods is radiocarbon dating analysis, which is better known as carbon 14 dating.
Full-Text [PDF 1860 kb]   (963 Downloads)    
Technical Note: Technical note | Subject: Archaeometry
Received: 2021/08/14 | Accepted: 2021/12/21 | Published: 2021/12/25 | ePublished: 2021/12/25

References
1. Bowman S. Radiocarbon Dating. London: British Museum Press, 1995.
2. Kamen MD. Early History of Carbon-14: Discovery of this supremely important tracer was expected in the physical sense but not in the chemical sense. Science. 1943; 140 (3567): 584-590 [DOI:10.1126/science.140.3567.584]
3. Anderson EC, Libby WF, Weinhouse S, Reid AF, Kirshenbaum AD, Grosse AV. Radiocarbon from cosmic radiation. Science. 1947; 105 (2765): 576-577 [DOI:10.1126/science.105.2735.576]
4. Laylin JK. Nobel Laureates in Chemistry, 1901-1992. Washington: American Chemical Society, 1993.
5. Aitken MJ. Science-based Dating in Archaeology. London: Longman, 1990. ISBN 978-0-582-49309-4.
6. Terasmae J. Radiocarbon dating: some problems and potential developments. In: Mahaney WC, editor. Quaternary Dating Methods. Amsterdam: Elsevier, 1984; p. 1-15. ISBN 978-0-444-42392-4. [DOI:10.1016/S0920-5446(08)70060-8]
7. McNichol AP, Jull ATS, Burr GS. Converting AMS data to radiocarbon values: considerations and conventions. Radiocarbon. 2001; 43 (2A): 313-320. doi:10.1017/S0033822200038169 [DOI:10.1017/S0033822200038169]
8. Libby WF. Radiocarbon Dating. Chicago: Phoenix; 1965.
9. Maslin MA, Swann GEA. Isotopes in marine sediments. In: Leng MJ, editor. Isotopes in Palaeoenvironmental Research. Dordrecht: Springer, 2006; p.227-290. doi:10.1007/1-4020-2504-1_06. [DOI:10.1007/1-4020-2504-1_06]
10. Russell N. Marine radiocarbon reservoir effects (MRE) in archaeology: temporal and spatial changes through the Holocene within the UK coastal environment [unpublished dissertation]. Glasgow, Scotland; 2011.
11. Reimer P, Austin W, Bard E, Bayliss A, Blackwell P, Bronk Ramsey C, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon.2020; 62(4): 725-757. doi:10.1017/RDC.2020.41 [DOI:10.1017/RDC.2020.41]
12. Hughen K, Heaton T. Updated Cariaco Basin 14C Calibration Dataset from 0-60 cal kyr BP. Radiocarbon. 2020; 62(4): 1001-1043. doi:10.1017/RDC.2020.53 [DOI:10.1017/RDC.2020.53]
13. Hogg A, Heaton T, Hua Q, Palmer J, Turney C, Southon J, et al. SHCal20 Southern Hemisphere Calibration, 0-55,000 Years cal BP. Radiocarbon. 2020; 62(4): 759-778. doi:10.1017/RDC.2020.59 [DOI:10.1017/RDC.2020.59]
14. Heaton T, Köhler P, Butzin M, Bard E, Reimer R, Austin W, et al. Marine20-The Marine Radiocarbon Age Calibration Curve (0-55,000 cal BP). Radiocarbon. 2020; 62(4): 779-820. doi:10.1017/RDC.2020.68 [DOI:10.1017/RDC.2020.68]
15. Bronk Ramsey C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon. 2009; 51(1): 337-360. doi:10.1017/S0033822200033865 [DOI:10.1017/S0033822200033865]
16. Bronk Ramsey C. Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program. Radiocarbon. 1995; 37(2): 425-430. doi:10.1017/S0033822200030903 [DOI:10.1017/S0033822200030903]
17. Buck CE, Christen JA, James GN. BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology.1999; 7(7). [DOI:10.11141/ia.7.1]
18. Jones M, Nicholls G. New radiocarbon calibration software. Radiocarbon. 2002; 44(3): 663-674. [DOI:10.1017/S0033822200032112]
19. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon. 2013; 55(4): 1869-1887. [DOI:10.2458/azu_js_rc.55.16947]
20. Eskandari N. The Results of the Archaeological Investigations at the Site of Varamin, Jiroft: Early Phase of Jiroft Civilization. Parseh J Archaeol Stud. 2020; 4 (13) :27-53 doi: 10.30699/PJAS.4.13.27 [in Persian] [اسکندری نصیر. نتایج پروژه پیش ازتاریخی محوطه ورامین: معرفی مرحله اولیه تمدن جیرفت. مطالعات باستان شناسی پارسه. 1399 ؛13: 27-53.] [DOI:10.30699/PJAS.4.13.27]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.