Kahiro II: The Importance of Copper Oxide Extraction Technology in 4th Millennium BC in Halil River Basin - Journal of Research on Archaeometry
year 6, Issue 2 (2020)                   JRA 2020, 6(2): 41-55 | Back to browse issues page

XML Persian Abstract Print

1- Art University of Isfahan , m.emami@aui.ac.ir
2- University of Jiroft
Abstract:   (1869 Views)

During an archaeological survey in the area known as Halil River cultural district, a large number of metallic slag and crucibles were found which have been scattered as residues over the surface of the site, called Chayiro II. The study on the melting slags and crucibles help to know about the metallurgical processes and the presence of copper as the main metals in this region. 10 samples have been selected for mineralogical investigations for identifying the crystalline phases, X-ray fluorescence analysis for better clustering the chemical composition as well as microscopical investigations. Copper droplets in the microscopic textures of the slags indicate the extraction of copper at this time in this region. Copper droplets have been dispersed as the crystalline form and are useful as a factor to estimate the melting temperature. The parts of the melting copper droplets found in this range also show copper casting. The igneous minerals found in the texture of crucibles show the use of an igneous source for their production as the main metallurgical vessels for purification as well as casting. Copper oxide minerals are mainly consisted of cuprite (Cu2O) and delafossite (CuFeO2) in the investigated samples. The existence of oxide minerals as melt residues indicates the melting of copper oxide in the region. Indeed, the accumulated of residues of oxide compounds are mainly the remains of an incomplete process of extraction or casting, which results in the formation of oxide copper at the last casting stage. It seems that copper oxide components are used for the production of matte or copper ingots. Based on the investigations, Kahiro II can be introduced as one of the focal points about the further consideration in this region. Copper oxides are the one of the oldest copper components that used for metal casting and extraction, via direct reduction.
Full-Text [PDF 1558 kb]   (454 Downloads)    
Technical Note: Original Research | Subject: Archaeometry
Received: 2019/10/9 | Accepted: 2020/02/2 | Published: 2020/12/24 | ePublished: 2020/12/24

1. Muhly, J.D., Sources of tin and the beginnings of bronze metallurgy. American Journal of Archaeology. 1985, pp. 275-291. [DOI:10.2307/504330]
2. Pigott, V. C., The development of metal production on the Iranian plateau: University of Pennsylvania Museum Press. Philadelphia. 1999.
3. Pigott,V. C., Sources of tin and the tin trade in southwest Asia: recent research and its relevance to current understanding. In Metallurgy: Understanding How, Learning Why: Studies in Honor of James D. Muhly. INSTAP Academic Press. Philadelphia. Pennsylvania 2011. [DOI:10.2307/j.ctt3fgvzd.35]
4. Hauptmann, A., Begemann, F. and Schmitt-Strecker, S., "Copper objects from Arad: their composition and provenance. Bulletin of the American Schools of Oriental Research. 1999; vol. 314: 1-17 [DOI:10.2307/1357449]
5. Wertime, T. A., Metallurgical expedition through the persian desert. A team brings traditional metallurgy to bear on archaeology. Science; 1968; (159): 927-935,. [DOI:10.1126/science.159.3818.927]
6. Pigott, V., On the importance of Iran in the study of prehistoric copper-base metallurgy. Persia's Ancient Splendour, Mining, Handicraft and Archaeology, 2004.
7. Erb-Satullol, N. L., Alloys from Anau: The Manipulation of Metallic Properties in 3rd Millennium B.C. Southern Central Asia. Mater. Res. Soc. Symp. Proc. 2011; (1319): Materials Research Society. [DOI:10.1557/opl.2011.739]
8. Wertime, T. A., The furnace versus the goat: the pyrotechnologic industries and Mediterranean deforestation in antiquity. Journal of Field Archaeology. 1983; (3): 445-452,. [DOI:10.2307/529467]
9. Hauptmann A. 5000 Jahre Kupfer in Oman: Die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit. Dt. Bergbaumuseum; 1985.
10. Weeks, L., Alizadeh, K., Niakan, L., Alamdari, K., Zeidi, M., Khosrowzadeh, A., The Neolithic settlement of highland SW Iran: new evidence from the Mamasani District. Iran. 2006; (44): 1-31. [DOI:10.1080/05786967.2006.11834679]
11. Thornton CP, Rehren T, Pigott VC. The production of speiss (iron arsenide) during the Early Bronze Age in Iran. Journal of Archaeological Science. 2009 Feb 1;36(2):308-16. [DOI:10.1016/j.jas.2008.09.017]
12. Rehren T, Pernicka E. Coins, artefacts and isotopes-archaeometallurgy and archaeometry. Archaeometry. 2008 Apr;50(2):232-48. [DOI:10.1111/j.1475-4754.2008.00389.x]
13. Thornton, C. P., Lamberg-Karlovsky, C. C., Liezers, M. and Young, S. M. On Pins and Needles: Tracing the Evolution of Copper-base Alloying at Tepe Yahya, Iran, via ICP-MS Analysis of Common-place Items. Journal of Archaeological Science. 2002; (29): 1451-1460,. [DOI:10.1006/jasc.2002.0809]
14. Weeks, L., Iran and the Bronze Age Metals Trade in the Persian Gulf. International Journal of the Society of Iranian Archaeologists. 2016; (2): 13-25.
15. Magee, P., Lamberg-Karlovsky, C. C. and Grave, P., Excavations at Tepe Yahya, Iran 1967-1975: The Iron Age Settlement. Peabody Museum of Archaeology. 2004; (3): 46-54
16. Emami, M. and Parvaresh, A., Mineralogish, Petrochemische Untersuchungen an Kupferschlacken aus "SHEIKH-ALI" Ophiolithkupferlagerstaetten, Kerman, Iran. in Archäometrie und Denkmalpflege 2016, Jahrestagung an der Georg-August-Universität Göttingen 28. 2016; pp. 205-208.
17. Emami, M., "Toroud", the late motion for As-Sb bearing Cu prodution from 2nd millennium BC in Iran: An archaeometallurgical approach. Mediterranean Archaeology and Archaeometry. 2014; (14):169-188.
18. Pigott, V and Pigott, V., The development of metal production on the Iranian plateau: University of Pennsylvania Museum Press, Philadelphia, 1999.
19. Momenzadeh, M., Metallic mineral resources of Iran, mined in ancient times: a brief review, Persiens antike Pracht: Bergbau, Handwerk, Archäologie: Katalog der Ausstellungdes Deutschen Bergbau-Museums Bochum. 2004; (28): 8-21, 2004.
20. Moorey, P., The archaeological evidence for metallurgy and related technologies in Mesopotamia, c. 5500-2100 BC. Iraq. 1982; (44): 13-38. [DOI:10.2307/4200150]
21. Addis, A., Angelini, I., Nimis, P. and Artioli, G., Late Bronze Age Copper Smelting Slags from Luserna (Trentino, Italy): Interpretation of the Metallurgical Process. Archaeometry. 2016; (58): 96-114. [DOI:10.1111/arcm.12160]
22. Badrzadeh, Z., Barrett, T. J., Peter, J, M., Gimeno, D., Sabzehei, M. and Aghazadeh, M. Geology, mineralogy, and sulfur isotope geochemistry of the Sargaz Cu-Zn volcanogenic massive sulfide deposit, Sanandaj-Sirjan Zone, Iran. Mineralium Deposita. 2011; (46): 905-923. [DOI:10.1007/s00126-011-0357-4]
23. Lechtman H. and Klein, S., The production of copper-arsenic alloys (arsenic bronze) by cosmelting: modern experiment, ancient practice. Journal of Archaeological Science. 1999; (26): 497-526. [DOI:10.1006/jasc.1998.0324]
24. Lamberg-Karlovsky CC. Trade mechanisms in Indus-Mesopotamian interrelations. Journal of the American Oriental Society. 1972 Apr 1:222-9. [DOI:10.2307/600649]
25. Radivojević M, Roberts BW, Pernicka E, Stos-Gale Z, Martinón-Torres M, Rehren T, Bray P, Brandherm D, Ling J, Mei J, Vandkilde H. The provenance, use, and circulation of metals in the European Bronze Age: the state of debate. Journal of archaeological research. 2019 Jun 15;27(2):131-85. [DOI:10.1007/s10814-018-9123-9]
26. Rehren, T., Boscher, L. and Pernicka, E., Large scale smelting of speiss and arsenical copper at Early Bronze Age Arisman, Iran. Journal of Archaeological Science. 2012; (39): 1717-1727. [DOI:10.1016/j.jas.2012.01.009]
27. Nezafati, N and Hessari, M., Tappeh Shoghali; A significant early silver production site in north central Iran. Periodico Di Mineralogia. 2017; (86): 67-73.
28. Liu, S., Rehren, T., Pernicka, E and Hausleiter, A., Copper processing in the oases of northwest Arabia: technology, alloys and provenance. Journal of Archaeological Science. 2015; (53): 492-503. [DOI:10.1016/j.jas.2014.10.030]
29. Hauptmann, A., The archaeometallurgy of copper: evidence from Faynan, Jordan: Springer Science & Business Media, 2007. [DOI:10.1007/978-3-540-72238-0]
30. Mödlinger, M., Cziegler, A., Macció, D., Schnideritsch, H. and Sabatini, B., Archaeological Arsenical Bronzes and Equilibrium in the As-Cu System. Metallurgical and Materials Transactions B. 2018; (49): 2505-2513. [DOI:10.1007/s11663-018-1322-8]
31. Wang, W., Chen, F., Wang, Y., Qian, W., Mei, J. and Martinón-Torres, M., Copper metallurgy in prehistoric upper Ili Valley, Xinjiang, China. Archaeological and Anthropological Sciences. 2018; 1-11. [DOI:10.1007/s12520-018-0679-6]
32. Yagel, O. A., Ben-Yosef, E and Craddock, P. T., Late Bronze Age copper production in Timna: new evidence from Site 3. Levant. 2016; (48): 33-51. [DOI:10.1080/00758914.2016.1145943]
33. Rademakers, FW. and Farci, C., Reconstructing bronze production technology from ancient crucible slag: experimental perspectives on tin oxide identification. Journal of Archaeological Science: Reports. 2018; (18): 343-355. [DOI:10.1016/j.jasrep.2018.01.020]
34. Rademakers FW, Nikis N, De Putter T, Degryse P. Copper production and trade in the Niari Basin (Republic of Congo) during the 13th to 19th centuries ce: Chemical and Lead isotope characterization. Archaeometry. 2018 Dec;60(6):1251-70. [DOI:10.1111/arcm.12377]
35. Emami M, Kowald T, Trettin R. Preliminary archaeometallurgical studies on copper extraction from polymetallic ore sources in Meymand, south central Iranian desert. Archaeological and Anthropological Sciences. 2017 Oct 1;9(7):1515-28. [DOI:10.1007/s12520-016-0319-y]
36. Killick D, Fenn T. Archaeometallurgy: the study of preindustrial mining and metallurgy. Annual Review of Anthropology. 2012 Sep 24;41. [DOI:10.1146/annurev-anthro-092611-145719]
37. Z. Hezarkhani and I. Keesmann, "Archäometallurgische Untersuchungen im Gebiet von Saghand-Posht-e-Badam (Zentraliran). Metalla (Forschungsberichte des Deutschen Bergbau-Museums, Bochum). 1996; (3.2): 101-125.
38. Radivojević M, Pendić J, Srejić A, Korać M, Davey C, Benzonelli A, Martinon-Torres M, Jovanović N, Kamberović Ž. Experimental design of the Cu-As-Sn ternary colour diagram. Journal of Archaeological Science. 2018 Feb 1;90:106-19. [DOI:10.1016/j.jas.2017.12.001]
39. R. Alipour and T. Rehren, "Persian Pulād Production: Chāhak Tradition," Journal of Islamic Archaeology, vol. 1, pp. 231-261, 2015. [DOI:10.1558/jia.v1i2.24174]
40. Wayman, M. L. and Duke, M. J. M., Eds., The effects of melting of native copper (Der Anschnitt-The Beginings of Metallurgy Beiheft 9). Bochum: Zeitschrift für Kunst und Kultur im Bergbau, 1999.
41. Keesmann I, BACHMANN H, Hauptmann A. Classification of iron-rich slags according to the phase-composition. InFortschritte der Mineralogie 1984 Jan 1 (Vol. 62, pp. 114-116). Naegele U Obermiller Johannesstrasse 3a, D 70176 Stuttgart, Germany: E Schweizerbart'sche Verlags.
42. Lamberg-Karlovsky CC, Kohl PL. The Early Bronze Age of Iran as seen from Tepe Yahya. Expedition. 1971 Apr 1;13(3):14.
43. Long G, Peng Y, Bradshaw D. A review of copper-arsenic mineral removal from copper concentrates. Minerals Engineering. 2012 Oct 1;36:179-86. [DOI:10.1016/j.mineng.2012.03.032]
44. Keesmann I, Niemeyer HG, Golschani F. Schlackenfunde von Toscanos. Madrider Mitteilungen. 1983(24):65-75.
45. Wechsler N, Shustak M, Ben‐Yosef E. Diffraction stack imaging as a potential tool for detecting underground voids-the case of the ancient copper mines of Timna Valley (Israel). Archaeological Prospection. 2020 Jan;27(1):27-37. [DOI:10.1002/arp.1754]
46. Craddock PT. From hearth to furnace: evidences for the earliest metal smelting technologies in the eastern Mediterranean. Paléorient. 2000 Jan 1:151-65. [DOI:10.3406/paleo.2000.4716]
47. Craddock PT. Refractories with a purpose II: Ceramics for casting. The Old Potter's Almanack. 2014 Jun 26;19(1):2-17.
48. Wood N, Doherty C, Rastelli S. Some aspects of Yue ware production at Shanglinhu in the late Tang dynasty.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.